Lecture topics:

- Cloud Development
- Two Odd clouds
Recall: **Vertical Movement & Temperature**

A rising air parcel encounters less pressure so it expands. Expansion uses energy to push out, adiabatically cooling the air.

A sinking parcel encounters greater pressure and that higher pressure does work on the parcel thereby heating it up.

Recall: \[P = \rho RT \]
Recall: Stability & Clouds

- Three examples of weather related to stability:
 - Clouds types linked to stability of the air. *Stratus clouds* found in stable conditions, *cumulus* are in unstable conditions. Thunderstorms in very unstable conditions.
 - *Lenticular* wave clouds form in stable air
Recall: the stability classes

- Yes! but it is easier to do this using a chart
- Compare the actual T change with height to the lapse rates Γd (red line) and Γm (blue line)
- Figures 7.3, 7.6, and 7.7 work out the three categories.
- Figure 7.8 is a summary:
Recall: absolutely unstable air can be created 7 ways

1. Bring colder air aloft
2. Radiation cools top of layer
3. Daytime heating
4. Bring warmer air below
5. Air moves over a warmer surface
6. Mixing the air (fig. 7.10)
7. Moving the whole column of air upwards (figs. 7.11 & 7.12)
Causing Air to Rise: Convection

• Result of a process that makes the layer of air unstable
• Recall there are 7 ways this can happen
• All cumuliform clouds
Causing Air to Rise: Topographic Lifting

- Air is forced to rise because the large scale wind pattern drives the air up the slope of mountains and hills.
Causing Air to Rise: Convergence

- large scale winds cause air to converge near the surface
- Occurs along fronts, the center of a hurricane, etc.
Causing Air to Rise: Frontal Lifting

- Fronts act like obstacles that can force air to rise.
- Blue line is cold front
- Red line is warm front
Causing Air to Rise: Gilbert -- Combines All Four Mechanisms

Hurricane Gilbert when it set a record low pressure at sea level of 885 mb →
Cloud development – will the rising air reach saturation?

• When air parcel rises, dewpoint and temperature of the parcel changes.
 – Cloud will form when the air parcel becomes saturated
 – Stability of the air may change
• Easiest to use an adiabatic chart:
• See pages 180-181
Adiabatic chart – part 1

- See pages 180-181
Adiabatic chart – part 2

- See pages 180-181
Adiabatic chart – 3 rules

- See pages 180-181
- Three rules for moving air on this chart:
 1. T changes follow Γ_d if unsaturated, Γ_m if saturated;
 2. Td changes follow constant w if unsaturated, Γ_m if saturated.
 3. When moving a layer, move the top and bottom like separate air parcels. Keep ΔP fixed.

Figure 6 The adiabatic chart. The arrows in the chart illustrate the example given in the text.
Adiabatic chart – moving a parcel

1. T changes follow Γ_d if UNsaturated, Γ_m if saturated;
2. T_d changes follow const w if unsaturated, Γ_m if saturated.
3. When moving a layer, move the top and bottom like separate air parcels. Keep ΔP fixed

T change follows arrows to the right: T_1 to T_2

T_d change follows arrows to the left: D_1 to D_2

LCL, lifting condensation level estimates base of cloud

Figure 6
The adiabatic chart. The arrows in the chart illustrate the example given in the text.
Adiabatic chart – moving a parcel

Example consistent with the air parcel track on the adiabatic chart
Adiabatic chart – moving a layer

Initial Profile

1. T changes follow Γ_d if UNsaturated, Γ_m if saturated;
2. Td changes follow const w if unsaturated, Γ_m if saturated.
3. When moving a layer, move the top and bottom like separate air parcels. Keep ΔP fixed
Adiabatic chart – moving a layer

Lifting
The layer

1. T changes follow Γ_d if UNSaturated, Γ_m if saturated;
2. T_d changes follow const w if unsaturated, Γ_m if saturated.
3. When moving a layer, move the top and bottom like separate air parcels. Keep ΔP fixed.
Adiabatic chart – moving a layer

Lifted Layer
Saturated &
Very Unstable

1. T changes follow Γ_d if UNSaturated, Γ_m if saturated;
2. Td changes follow const w if unsaturated, Γ_m if saturated.
3. When moving a layer, move the top and bottom like separate air parcels. Keep ΔP fixed
Cloud Development - Two Unusual Clouds

• Mammatus clouds
• Cap clouds
Cloud Development - Mammatatus Clouds

- Only cloud that grows by downward moving air
- Down motion caused by evaporation of drops that cools the air until it reaches saturation (and also sinks)
Cloud Development - Cap Clouds

- Stable atmosphere
- Strong winds
End of lecture 5