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1. Background and Motivation
»The Madden—Julian oscillation (MJO) is the dominant tropical intraseasonal variability

(Madden and Julian 1994), and its influences weather and climate over the extra-tropics
(e.g., Matthews et al. 2004). The MJO may contribute to extreme weather for instance:

heavy rainfall and extreme temperature events (Hong and L1 2009, Jones et al. 2011,
Matsueda and Takaya 2015). We consider California Central Valley (CCV) heat waves.

» Motivation: Backwards in time trajectories of air arriving at CCV at event onset find:

many cross the N Pacific, and all sink from mid troposphere before arriving to start the
heat wave (Lee and Grotjahn, 2015). Are these motions connected to tropical convection
motion? If so, which zonal location of tropical convection 1s preferable for sinking motion
at CCV? We assess the MJO phase dependency on the occurrence of CCV heat waves.

2. Data and Methods

= Data period: 32 summer seasons (JJAS,
122days), 1979-2010

= Event detection criteria

- MJO events (dur.>=3days, amp.>=1,

interval>=10days) for 4 phases

- 24 CCYV heat waves (HWs) (LG2015)

15 NCDC station daily surface Tmax
ERA-Interim: 6hourly
Daily OLR CDR Product VerO1Rev02

MJO index (Wheeler and Hendon 2004)

4. OLR composites & Pattern correlation
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Fig 7. (Top) pattern correlation between the fields of
Fig 5 and Fig 6 over the whole domain plotted.

Fig 5. OLR anomaly composites during 0 to 2 days after MJO (bottom) averages of the OLR anomalies of Fig 5 over
events onset for 4 pairs of MJO phases. Purple boxes show areas  green boxed area.

of larger OLR magnitude in 4 MJO phase pairs.

6.

v

OLR, ano (9 to 1 day prior to HW_e) v Phase 1-2 MJO (Indian ocean convection) OLR pattern
it - /B Vv —?@E is most similar to the OLR composite prior to heat
waves events.
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Fig 6. OLR anomaly composite during 9 to 1 days prior occurrence

to the onset of the 24 CCV heat wave events

Conclusions

Cross covariance and two normalized temperature anomalies metrics show that
MJO events lead CCV heat waves (HWs) by about 1 to 9 days particularly for phase
1-2 and 3-4 [figs. 2 & 4].

It’s hard to separate the impact of tropical and extratropical convection to CCV hot
weather for 10 or more days before CCV hot days [fig. 4]. To focus on tropical
contribution, this study mainly considers the period of 1 to 9 days atter MJO events
or the period of 9 to 1 days prior to heat wave events onset.

Indian Ocean tropical convection leads extreme (5% hottest) hottest days more
frequently than other phases [fig. 3], consistent with the largest pattern correlation
of OLR & velocity potential anomalies between MJO phases and HWs [fig. 7 & 10].
Indian Ocean tropical convection (phases 1-2) leads upper level (200 hPa)
convergence and lower level (850 hPa) divergence near west coast of N. America [fig.
10] causing sinking there; such sinking is needed to create the CCV HW,

Hence phases 1-2 of MJO are most consistent with subsequent CCV HWs.

3. Tropical signal leads CCV

MJO events (persist at least 3 days)
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Fig 1. Numbers of MJO events for each pair of MJO phases
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Fig 2. (Left) fraction of 5% hottest days among all event days and

20N

(right) mean normalized temperature anomalies for all event days at 0
each lag for 4 MJO phase pairs. Lag measured from end of each MJO 40N
event.
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Fig. 4. Lead cross-covariances: OLR anomalies

Fig 3. (Left) fraction of 5% hottest days among all event days and (right) versus 15 CCV stations averaged normalized
mean normalized temperature anomalies during 1 to 9 days after MJO  temperature anomaly time series over 32

events. Gray lines are for 15 stations and red is for their average. summer seasons.
v Phase 1-2 MJO (Indian ocean convection) has higher v 15 to 11 lead days : strong convection
association with subsequent CCV extreme hot days. over India & E Asia. Focus on MJO areas

é. Velocity Potential Composite & Pattern Correlation \
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Fig 9. Velocity potential anomaly composites during O to
2 days after the onset of the 24 CCV heat wave events

v Phase 1-2 MJO (Indian ocean convection): VP pattern
1 to 9 days after MJO events is most similar to the VP
composite of heat waves events for both levels.

v Phase 3-4 and 5-6 MJO: upper level divergence and

lower level convergence (not preferable for sinking
motion, hence cooler temperatures in fig. 3)

Fig 8. Velocity potential anomaly composite during 1 to 9 days after MJO events at 200 hPa (left) and 850
hPa (right) for 4 pairs of MJO phases. (>0 for convergence; <0 for divergence)
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Fig. 10. (Top) pattern correlation between the fields
of Fig 8 and Fig 9 and (bottom) averaged velocity

potential anomalies of Fig 8 over green boxed area
for (dark blue) 200 hPa and (red) 850 hPa. /
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