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Introduction

Baroclinic instability refers to a process by which
perturbations draw energy from the mean flow
potential energy. The conversions of energy are
proportional to perturbation heat fluxes in both
horizontal and vertical directions. The atmosphere
requires heat fluxes to maintain the observed pattern
of net radiation (positive in the tropics, negative
poleward of 381N or S on an annual average). A zonal
mean meridional circulation, such as a tropical Hadley
cell, can generate these heat fluxes. However, in middle
latitudes, various factors cause eddies to accomplish
the bulk of the heat transport. Baroclinic instability
provides a mechanism to explain how these eddies
form and evolve while incorporating the necessary
heat fluxes. Theoretical models of baroclinic instabil-
ity can simulate various observed properties of mid-
latitude eddies, including the dominant length scales,
propagation speed, vertical structure, and energetics.

Baroclinic instability can be viewed as a shear
instability. From thermal wind balance, the vertical
shear of the zonal wind is proportional to a meridional
temperature gradient. The meridional temperature
gradient is proportional to the available potential
energy (APE) that the baroclinic instability mechanism
taps. Another view of baroclinic instability emphasiz-
es interacting potential vorticity (PV) anomalies.
Baroclinic instability is usually studied by linearizing
the dynamics equations and using eigenvalue or initial
value techniques. These alternative views and analysis
procedures generally provide complementary means
to understand better baroclinic instability.

An Illustrative Model

An illustrative model provides mathematical relations
and archetype solutions for the concepts that follow.

Mathematical Formulation

The model uses quasi-geostrophic (QG) approxima-
tions and nondimensional scaling appropriate for
midlatitude frontal cyclones. Potential vorticity has
contributions from the interior and from temperature
gradients at rigid bottom ðz ¼ 0Þ and top ðz ¼ ZTÞ
boundaries. In the QG system, PV can be written as:
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where c is the horizontal velocity streamfunction, r is
density, g is the acceleration due to gravity, and k is the
static stability from the horizontal mean potential
temperature. The coordinates are x eastward, y
northward, and z upward. Nondimensional length
scales are L in the horizontal and D in the vertical. f0 is
the constant part while b is the meridional derivative
(approximated as a constant) of the Coriolis param-
eter.

An inherent horizontal length scale is the Rossby

radius of deformation ðLR ¼ NHf�1
0 Þ where N is the

Brunt Väisälä frequency ðN2 ¼ gkD�1Þ and H ¼
RTg�1 is the scale height (an inherent vertical length

scale). Thus, e ¼ ðLHÞ2ðLRHÞ�2 relates the assumed
scales L and D to LR and H.

Quasi-geostrophic PV includes three distinct parts:
absolute vorticity, which includes relative vorticity
(RV); ‘‘thermal’’ vorticity (TV); and boundary PV
(BPV). Positive PVis associated with an interior trough
(in geopotential) and/or a warm surface temperature
anomaly.

When the vorticity and potential temperature con-
servation equations are combined, one obtains a time-
dependent equation for QGPV conservation:

0076-P0005

0076-P0010

0076-P0015

0076-P0020

0076-P0025

0076-P0030

0076-P0035

BAROCLINIC INSTABILITY 1

rwas.2002.0076 15/4/02 13:25 Ed:: M. SHANKAR No. of pages: 10 Pgn:: thilakam



q
qt

þ U
q
qx

� �
r2cþ 1

r
q
qz

re
qc
qz

� �� �

þ qQ

qy

qc
qx

¼ 0

½2a�

with boundary conditions at the bottom and top
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‘‘Basic state’’ variables are specified: U (independent of
x) is zonal wind, and Q is the interior part of the
QGPV; meridional and vertical velocities are zero.
One can solve eqn [2] as an initial value problem by
specifying an initial streamfunction or potential
vorticity.

An eigenvalue problem can also be formulated from
eqn [2]. A common approach assumes time and space
dependence in the form:

cðx; y; z; tÞ ¼ Re fðy; zÞ exp ½ikðx � ctÞ�f g ½3�

for the ‘‘perturbation’’ streamfunction being sought.
This solution has zonal wavenumber k and complex
phase speed c. The growth rate is given by kImfcg. If U
has no meridional variation, then one can assume a
wavelike y dependence too: expðilyÞ. When wave-
number l ¼ k, the solution is a ‘‘square wave.’’
Perturbation velocities are defined as u ¼ �qc=qy
and v ¼ �qc=qx.

Additional simplifying approximations are often
made. A particularly simple form, commonly labelled
the ‘‘Eady model,’’ was described by E. T. Eady in
1949. The Eady model assumes wavelike meridional
structure, qQ=qy ¼ 0, U ¼ z, incompressibility
ðr ¼ constantÞ, and e ¼ 1. Then eqn [2a] is reduced
simply to solving q0 ¼ 0 in the interior where the prime
denotes the ‘‘perturbation’’ sought. The Eady eigen-
value problem can be solved analytically to yield a pair
of normal modes, one growing, and one decaying, for
scaled wavenumber ao � 2:4. The scaled wave-
number:

a ¼ ðk2 þ l2Þe�1
� �1=2 ½4�

is proportional to absolute wavenumber and static
stability.

Equations for perturbation kinetic energy, Ke and
available potential energy, Ae are:
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The volume integrals are over a closed domain. In the
QG system, qc=qz is proportional to potential tem-
perature y, making the first term on the right-hand side
of eqn [5a] proportional to a meridional heat flux,
while the second term is proportional to a vertical heat
flux. The specified vertical shear, qU=qz, is propor-
tional to the available potential energy, Az of the basic
state and is the energy upon which the baroclinic
instability mechanism feeds. The first term on the
right-hand side of eqn [5b] is a barotropic energy
conversion. The barotropic conversion is proportional
to the divergence of eddy momentum flux and also
draws energy from the mean flow. The second term on
the right-hand side of eqns [5a] and [5b] is the same,
but with opposite sign indicating a conversion be-
tween Ae and Ke.

Example Solutions

This QG eigenmodel of baroclinic instability is appli-
cable to the midlatitudes. In these regions zonal flow
increases with height reaching a maximum near the
tropopause. Figure 1A is a representative nondimen-
sional profile of U where the tropopause is at nondi-
mensional z ¼ 1:0. The growth rate and phase speed
spectra, along with the (growing normal mode)
eigenfunction structures for different k are also shown
in Figure 1. The growth rate has maximum value at a
specific value of a. The vertical structure tends to have
relative maxima at the surface and near the tropo-
pause, but it becomes progressively more bottom-
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trapped for shorter waves. The phase varies such that
unstable modes tilt upstream with height, i.e., against
the mean flow shear. Other solutions to eqn [2],
labeled continuum modes, are relevant to nonmodal
growth.

For shorter waves the lower maximum tends to
dominate (when compressibility is included) and the
solution decays rapidly away from the boundary. For
longer waves the tropopause level maximum tends to
dominate (Figure 1C). Eady model normal modes have
interior q0 ¼ 0; from eqn [1]: the Laplacian increases

as k2, requiring a rapid change with height for short
waves to make the thermal term comparable (this
leads to boundary trapping of the solutions). For
longer waves, the Laplacian becomes small and the
vertical structure is more evenly spread in the vertical,
hence these modes are ‘‘deeper.’’

Typical geopotential patterns observed prior to
frontal cyclone development have separate surface
and upper troposphere troughs, each equivalent
barotropic (vertical trough axis), with the upper-level
trough more prominent. A crude simulation of that
initial state is used to generate solutions shown in
Figure 2. Time-series of the growth rates of several
quantities are tracked over several days. The time-

series include potential enstrophy ðHðq0Þ2Þ and total
energy ðTE ¼ Ae þ KeÞ integrated over the whole
domain. The solutions approach asymptotically to
the most unstable normal-mode growth rate as that
eigenmode emerges to dominate the solution. The
growth rate has transient peak values that can exceed
the asymptotic (normal-mode) value.

Classical View

Baroclinic instability draws upon the APE of the
environment in which an eddy sits. Since APE is related
to a horizontal temperature gradient, which is in turn
related to the vertical shear, it can be viewed as a type
of shear instability. One advantage of doing so is to
make comparisons with barotropic instability, which
draws energy from the horizontal shear. This view
provides a link to the eddy fluxes that are observed and
necessary for each conversion.

As demonstrated in eqn [5], heat fluxes are neces-
sary to have a baroclinic energy conversion. Horizon-
tal heat fluxes imply that the temperature and mass
(here c) fields are offset. The offset implies that the
trough and ridge axes tilt upstream with elevation.
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0076-F0001 Figure 1 Quasigeostrophic eigenanalysis. (A) Specified zonal wind U , and meridional gradient of interior potential vorticity Q0y versus

scaled height. z ¼ 1 is 10 km. (B) Growth rate and (C) phase speed versus absolute wavenumber a. (D)–(F) Amplitude A, and phase P , for

the growing normal mode for a ¼ 0:8, a ¼ 2:0, and a ¼ 3:0, respectively. All three modes tilt westward (upstream) with increasing height.

Dimensional wavelengths depend upon scaling assumptions, but reasonable choices imply that a ¼ 0:8, a ¼ 2:0, and a ¼ 3:0 correspond

to 11.0, 4.4, and � 2:9�103 km wavelengths, respectively. (Zonal and meridional scales are set equal.) The same scaling implies phase

speed of 9 m s� 1 and doubling time of B1.2 days for a ¼ 2:0. (Adapted with permission from Grotjahn R (1980) Journal of Atmospheric

Sciences 37: 2396–2406 by permission.)
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The QG formulation above is adiabatic, so individ-
ual parcels conserve their potential temperature ðyÞ
over time. For unstable modes, the horizontal and
vertical eddy heat fluxes must distort the y field over
time, as suggested schematically in Figure 3. An
isentropic ðyÞ surface is drawn in three-dimensional
perspective; it curves up and over colder areas and dips
down over warmer areas. Prior to eddy development,
the isentropic surface did not vary in the x direction
and had a shape like its intersection with the wall at
x ¼ 0. The isentropic surface is distorted by flow
around the high- and low-pressure centers and repre-
sentative cold (C) and warm (W) trajectories are also
drawn. When these trajectories are projected onto the
x ¼ 0 wall, they appear to cross the initial zonal mean
isentrope and have a slope that is typically half the
slope of the mean isentrope. In fact, they are changing
the zonal mean of the isentrope to become more
horizontal, thereby reducing the horizontal tempera-
ture gradient and thus reducing Az. In this classical
view, Az is reduced while Ae is increased by increasing
the zonal undulations of the isentropic surface.
Another aspect is that colder air is sinking while
warmer air is rising, a process that lowers the center of
mass and thus converts Ae into Ke. To lower the center
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0076-F0002 Figure 2 Initial value calculation. (A) Zonal cross-section of initial streamfunction, dashed contours used for negative values. (B) Time-

series of growth rates for domain average potential enstrophy (solid line) and its components: RV2 (short dashed line), TV2 (dot-dashed

line), and BPV2 (long dashed line). Growth rates approach asymptotically the most unstable normal mode rate for this wavenumber

a ¼ 2:0. (C) Similar to (B) except for total energy (solid line), kinetic energy (short dashed line), and available potential energy (dot-dashed

line).
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0076-F0003Figure 3 Schematic diagram showing distortion of an isentropic

surface by a baroclinically amplifying frontal cyclone. Dotted lines

are used for objects underneath the three-dimensional isentropic

surface. Surface high, H, and low, L, are marked together with two

representative contours of surface pressure. Trajectories of

representative parcels are shown in warm air, W, and cold air, C.

Subscript s denotes projection onto the bottom surface, while z

denotes projection onto the meridional plane (where x ¼ 0). The

trajectories do not cross the isentropic surface but distort it. Initially

the isentropic surface had negligible variation with x and looked like

the current pattern at x ¼ 0. The projections Wz and Cz seem to

cross the initial isentropic surface but in fact are flattening it (which

reduces Az). Rising air is warm while sinking air is cold, which

lowers the center of mass, converting Ae into Ke.

0076-P0080

4 BAROCLINIC INSTABILITY

rwas.2002.0076 15/4/02 13:25 Ed:: M. SHANKAR No. of pages: 10 Pgn:: thilakam



of mass, the parcel paths must have the vertical
component indicated, but they must also be less than
the slope of the mean isentropes for instability to
occur.

The classical view can incorporate latent heat
release as follows. The bulk of the precipitation in a
developing cyclone forms in the warm-air sector of the
storm. The release of latent heat further depresses the
isentropic surfaces where there is poleward motion,
implying additional conversion of Az into Ae and Ke.

Potential Vorticity View

The potential vorticity view of instability tracks how
two or more PVanomalies interact in a way that causes
growth of the PV anomalies. Potential vorticity is a
fundamental conserved quantity for adiabatic mo-
tions. The illustrative model is designed around QGPV
conservation.

A PV pattern has an associated streamfunction and
horizontal wind field. In general, eqn [1] implies that
PV emphasizes smaller-scale variations than the
streamfunction field. Inverting eqn [1] obtains broad

patterns of c associated with isolated packets of q. An
illustrative example is shown in Figure 4 for PV
anomalies in the upper troposphere. The associated

winds are displaced from the PV anomaly center by 1
4

wavelength (B1000 km). A similar diagram can be
constructed for a PVanomaly associated with a surface
temperature gradient.

Potential vorticity anomalies are created by flow
across PV contours. Figure 5 illustrates how two
sinusoidal PV anomalies can amplify each other. The
PV gradient is reversed between the two levels,
increasing with y at upper levels and decreasing with
y at the surface. This pattern is consistent with upper
tropospheric PVand the surface temperature gradient,
respectively. (Recall that q is positive for lower
geopotential height or warmer surface temperature.)
The associated winds cause propagation by distorting
the PV pattern. However, the meridional wind asso-
ciated with a PV anomaly is in quadrature with that
anomaly so the PV cannot amplify itself. Growth is
described simply as advection at the PV extrema that
further amplifies the PV pattern. Since the associated
winds extend beyond the elevation of the PVanomaly,
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0076-F0004 Figure 4 Quasi-geostrophic potential vorticity inversion on a sphere. Zonal cross-sections are shown over 901 longitude. Potential

vorticity anomalies are specified and centered at 451N; (A) and (B) use dotted lines to indicate PV contours 0.5 and �0.5 nondimensional

units for wavenumbers 4 and 8, respectively. Contours are streamfunction,c, derived from inverting the PV relation of eqn [1]. Lows ðco0Þ
correspond with PV > 0 maxima, and vice versa. (C) and (D) show the meridional winds associated with c in (A) and (B), respectively.

Dashed contours denote negative values. The contour interval in (A) and (B) is 0.005; in (C) and (D) it is 0.002. Longer PV anomalies have

deeper and stronger streamfunctions.
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there can be interaction with a second PV anomaly at
another level. When the second PV anomaly is offset
from the first, as in Figure 5A, the associated winds
amplify the first anomaly.

This mechanism also explains how developing
cyclones maintain a preferred tilt (i.e., become ‘‘phase
locked’’). The lower anomaly is shifted horizontally to
the right in Figure 5B so that upper and lower
anomalies are 180 degrees out of phase. The two PV
anomalies no longer amplify each other’s PV anoma-
lies (shutting off the instability mechanism). Further-
more, the two anomalies reinforce the velocities
midway between their positive and negative extremes,
thereby enhancing the propagation at each level; but
the propagation is in opposite directions at each level,
thereby reducing the phase shift to reestablish the
pattern in Figure 5A. As with the classical view,
normal modes are a special case where this phase
locking is optimized.

The PV view provides theoretical weight to a classic
description of how cyclones develop: an upper-level
trough (PVanomaly) approaches a low-level baroclin-
ic zone (another PVanomaly), then growth commenc-
es. This paradigm is commonly labeled ‘‘type B’’
cyclogenesis.

Observations show independent troughs at the
upper and lower troposphere prior to development
with the upper approaching the lower. Neither trough
has upstream tilt initially; such tilt emerges only after
the two become favorably aligned and growth has
commenced.

A necessary condition for instability is that the
across-flow mean gradient of PV changes sign within
the domain. In the illustrative model above, b > 0
meaning Qy > 0 in the interior, and the surface

temperature gradient ðdy=dyo0Þ implies Qyo0 at

the ground. In the Eady model Qy ¼ 0 everywhere in

the interior, so the normal-mode instability comes
from BPV having opposite sign at top and bottom
boundaries.

A necessary condition for instability is that a
steering level, where U ¼ Refcg, lies within the
domain. A supportive kinematic argument is that air
parcels remain with the system (rather than blow
through it or be left behind) and are more easily mixed
laterally. For really long waves, strong retrogressive
motion caused by theb term leads to a different class of
unstable eigenmodes for ao � 1:1 (note cusp in
Figure 1B) than for larger a.

Normal Modes

Normal modes are physically meaningful eigenfunc-
tions. As in the illustrative model, the equations are
linearized about a specified basic state and perturba-
tion solutions are sought. Most commonly, the time
and one or more space dependencies are assumed. By
assuming a form like that in eqn [3], unstable solutions
grow exponentially. Models that are simple enough
may be solved analytically. More commonly, the
eigenvalue problem is solved numerically.

Normal modes are consistent with many observed
features:

1. Unstable modes tend to be lined up along the jet axis
(if present) in the mean flow.

2. The most unstable wavelength is similar to the
observed median size. The normal mode scale can
be manipulated by varying the choices made for
nondimensional parameters, but is on the order of
4500 km.

3. Solutions tend to develop similar zonal and merid-
ional lengths, the latter responding to the width of
the jet that provides one natural scale in the model.
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0076-F0005 Figure 5 Baroclinic instability from interacting PV anomalies at two levels. A representative PV contour (dot-dashed line) is drawn at

each level. The offset is (A) 1
4 wavelength and (B) 1

2 wavelength. A typical wavelength might be 4�103 km. Each anomalyhas an associated

wind component parallel to the PV gradient; dashed arrows are winds from the lower PV anomaly, while solid arrows are from the upper

anomaly. The winds from each anomaly advect the associated anomaly. In (A) each PV anomaly has a wind component that amplifies the

undulation in the other anomaly, thereby causing growth. In (B) each PV anomaly has a wind component that augments the propagation in

the manner indicated by the broad arrows; this causes the anomalies to migrate to a phaselike diagram (A).
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Other properties (such as static stability) also
influence the length scales.

4. The vertical structure of the most unstable modes
tends to have relative maxima at the surface and
upper troposphere.

5. In growing normal modes the temperature lags the
mass field (typically by 20–50 degrees of phase for
the most unstable mode). Two consequences are:
� First, the mass field must tilt upstream with

height. There is typically 1
4 to 1

2 wavelength (1–

2� 103 km) between the trough location at the
surface and at tropopause level.

� Second, the lag allows across-flow heat fluxes
down the temperature gradient, as expected from
eqn [5a]. In the Eady model the heat flux is
uniform with height. Model improvements, most
notably compressiblity, can emphasize the eddy
heat flux in the lower troposphere (where obser-
vations find it most prominent).

6. The rate of propagation is B10–20 m s�1: slower
than jet stream level winds, but faster than (zonal
average) surface winds. The steering level is defined
as the level where the propagation speed of the
storm is equal to the wind component along the
storm’s track. The steering level for the most
unstable normal modes is typically between 700
and 500 mbar, depending on the assumptions
made. For shorter waves, the steering level is closer
to the surface, and these modes move more slowly.
Longer waves respond to competing effects: they
have greater upper-level amplitude (where U is
faster) but greater sensitivity to b (which enhances
retrograde motion).

7. The rate of growth is similar to but slower than that
of observed cyclones. Observed doubling times are
typically 1–2 days at upper levels.

8. Instability is inversely proportional to static stabil-
ity. For example, the peak growth rate depends on a
(5 2.0 in Figure 1). From eqns [1b]and [4], a is
proportional to static stability k. Hence, smaller k
places the most unstable peak at larger k, making
the growth rate ðkImfcgÞ larger. Kinematically,
vertical motion needed in eqn [5] becomes easier
for smaller k.

The fact that normal modes have fixed tilt is not
necessarily unrealistic. Observations of the vorticity
equation terms support an approximately fixed struc-
ture for a developing low because the divergence term
opposes the horizontal advection at upper levels but
reinforces the horizontal advection at low levels. The
normal modes (Figure 1) are special structures where
the net advection is exactly uniform throughout the
depth of the fluid. Tracking observed troughs over

time shows some evidence for a period of fixed tilt
during growth, though the 12 h interval between
upper air observations makes the measurement diffi-
cult. The vorticity equation also illustrates instability
by which the divergence term has positive vorticity
tendency at a trough where vorticity is a maximum,
thus amplifying the peak vorticity (and vice versa for
ridges).

In addition to the normal modes, the eigenfunctions
include a class of solutions called ‘‘continuum’’ modes.
For an adiabatic model continuum modes have
equivalent barotropic structure (no tilt), making
them neutral. In the Eady model, continuum modes
have zero PV at all levels except at the critical level,
where their amplitude has a ‘‘kink.’’ Continuum
modes play a role in nonmodal growth.

Nonmodal Growth

Nonmodal growth is seen when solving initial value
problems such as eqn [2]. The formulation can be
linear, as in eqn [2], or nonlinear. This approach is
more general than eigenanalysis, since the time
dependence is not assumed.

The solution at any time can be decomposed into a
combination of eigenfunctions. For an arbitrary initial
state, continuum and normal modes are present. These
modes move at differing speeds. In a linear formula-
tion the modes operate independently; as modes
disperse, positive and negative reinforcement varies.
The interference between modes decays algebraically
asymptotically. However, for some initial conditions it
is possible to have sizable growth over a limited time
period.

For the Eady model, analytic solutions can be found
that illustrate the process. Using an initial condition
with upstream tilt (f � exp ðimzÞ in eqn [3], where
m > 0) yields solutions with normal mode and alge-
braic parts. The algebraic part has time dependence

proportional to fðm � ktÞ2 þ a2g�1 and
exp fiðm � ktÞzg. The amplitude increases as the tilt

becomes more vertical until t ¼ mk�1. After that, the
wave tilts downstream and decays.

Initial upstream tilt becoming more vertical with
time has led to an expectation that RV increases at the
expense of TV while interior PV remains conserved.
However, exceptions can be found where large non-
modal growth occurs (in H) as upstream tilt ‘‘devel-
ops’’ from an initial state with no tilt. The explanation
lies in a rough cancellation between RV and TV,
leaving the BPVevolution to dictate rapid growth in H.

A robust interpretation of nonmodal growth is
progressively more favorable superposition of constit-
uent modes. Continuum modes, having mainly upper-
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level amplitude, tend to move quickly, while modes
with mainly lower-level amplitude move slowly. De-
composition into eigenmodes of an initial state with
upstream tilt finds faster continuum modes located
upstream of slower continuum modes. Over time, the
modes become more favorably lined up; the tilt
becomes more vertical and the total amplitude in-
creases. Figure 6 illustrates the process.

Nonmodal growth can be quite strong in simple
models like Eady’s. However, most improvements to
the model such as adding compressibility, variable
Coriolis, and realistic vertical shear of U reduce
nonmodal growth. Using more realistic initial states
also tends to reduce nonmodal growth (e.g., using a
wave packet instead of a wavetrain; using separate
untilted upper and lower features instead of connect-
ing them with a tilt).

Other Issues

Baroclinic instability has links with barotropic insta-
bility. First, each instability draws energy from mean
flow shear. Second, barotropic instability has a similar

stability criterion (absolute vorticity gradient chang-
ing sign in the domain). Third, there is interference
between the two instabilities. The most unstable
baroclinic eigenmode has optimal structure for a
flow having only vertical shear, but when horizontal
shear is added to that flow a different structure is
needed or the eddy will be sheared apart. The
subsequent structure is unlikely to be as optimal for
baroclinic energy conversion. Hence, the baroclinic
conversion will usually be reduced, though the baro-
tropic growth mechanism may compensate. Figure 7C
illustrates such a calculation; in this case adding a
purely barotropic flow reduced the growth rate, even
though the barotropic growth mechanism was acti-
vated.

Baroclinically unstable frontal cyclones prefer to
develop in certain regions. The preference may arise
from local conditions, such as lower static stability or
locally greater vertical shear. The illustrative model
above assumes a wavetrain solution; when more
localized development is considered, a variety of issues
are raised.

For example, if one uses a single low as the initial
condition, the solution typically evolves into a chain of
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0076-F0006 Figure 6 Nonmodal growth as a superposition process. Four initial value linear calculations are shown. The top three rows show three

individual neutral continuum modes at three times. The bottom row shows the sum of the three modes at the initial time. (A) Initial condition;

(B) time when energy growth is a maximum in the sum; (C) time when growth rate is zero in the sum. (Adapted with permission from

Grotjahn R, Pedersen R and Tribbia J (1995) Journal of Atmospheric Sciences 36, 764–777).
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waves as the modal constituents of the initial state
disperse. Alternatively, a wave packet initial condition
might be used consisting of a ‘‘carrier wave’’ multiplied
by an amplitude envelope. The packet evolution
depends upon the mean flow properties and assump-

tions made in the model. However, for reasonable
choices of parameters, one might find a packet that
spreads while propagating downwind. The leading
edge of the packet has mainly faster, wider, and deeper
modes. The trailing edge has slower, shorter, and
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0076-F0008 Figure 8 Initial value calculations for a linearly localized initial condition. (A) Zonal cross-section showing contours of streamfunction

initially. Values o� 1:0 are shaded. (B) Horizontal pattern of streamfunction at tropopause level ðz ¼ 1:0Þ initially. The initial condition is

constructed from neutral modes having similar phase speed. Growing or decaying normal modes are excluded. (C) Time-series of energy

growth rate for three integrations. The linear model (dotted line) shows little growth since the nonmodal mechanism is weak and growing

normal modes cannot develop. Also shown are nonlinear calculations for two amplitudes of the initial condition, where the solid line uses

three times the initial amplitude of the dot-dashed line. Growing normal modes are activated by nonlinear interaction. Some evidence of

nonlinear saturation is seen.
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0076-F0007 Figure 7 Baroclinic energy conversion ðAz ! AeÞ for four models. (A) Lowest-order, square wave solution for an Eady-type model but

including compressibility, increasing vertical shear in U, b ¼ 1. (B) Solution when a surface frontal zone, centered at Y ¼ 0, is added to the

lowest-order mean flow U0 and leading ageostrophic advective effects are included (using geostrophic coordinates). The frontal zone

adds wind field: 0:2ð2z � z2Þ U1 where U1 ¼ b1ð1 � tanh2 ðaY Þndash;b2 � 3b3Y 2 to U0. The geostrophic coordinate transform causes

the asymmetry. (C) Correction to the conversion shown in (A) when barotropically unstable horizontal shear U1 is added to U0. If the total

wind is U ¼ U0 þ mU1, then the total conversion is ðaÞ þ mðcÞ. The barotropic shear reduces the growth rate. (D) Modification due to all

leading order ageostrophic corrections. If those corrections are order m, then the total conversion is ðaÞ þ mðdÞ. Ageostrophic conversions

reduce the conversion and introduce asymmetry. (Adapted with permission from Grotjahn R (1979) Journal of Atmospheric Science 36,

2049–2074.)
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shallower waves. It is possible to construct a localized
structure that resists this dispersion by making a
judicious combination of eigenmodes having similar
phase speed, but different zonal wavenumber. Figure 8
illustrates such an example using neutral continuum
modes. When this model is solved as an initial value
problem the packet maintains a localized shape for a
long time. Almost no growth occurs because the
normal modes were filtered out, and there is very slow
phase shifting of the constituent modes. However,
when nonlinear advection is allowed, modes interact
and soon amplitude is injected into all the eigenmodes,
including the growing normal modes, which grow
rapidly in this example.

Studies of regional development spawned subcate-
gories of baroclinic instability. ‘‘Absolute’’ instability
occurs when the wave packet expands faster than it
propagates; the amplitude at a point keeps growing.
‘‘Convective’’ (in the advection sense) instability
occurs when the packet moves fast enough so that
growth then decay occurs as the packet moves past a
point. ‘‘Global’’ instability (like the eigensolutions
shown here) has growth that is invariant to a Galilean
transform. Such is not the case for ‘‘locally’’ unstable
modes. Normal modes for zonally varying basic states
look like carrier waves modulated by a spatially fixed
amplitude envelope; the envelope locally modifies the
growth rate (sometimes called ‘‘temporal’’ instability).
‘‘Spatial’’ instability allows wavenumber to be com-
plex while phase speed remains real.

Nonlinear calculations raise other issues related to
baroclinic instability. One issue concerns equilibra-
tion. The growing wave modifies the mean flow while
drawing energy from it. This places a limit upon the
cyclone development. In PV theory, this may be where
the distortion shown in Figure 5 becomes comparable
to the cyclone width. Waves longer than the most
unstable wave tend to reach a larger amplitude than
the linearly most unstable mode. One reason for this is
that they are deeper and so can potentially tap more
APE in the mean flow. Another reason may be that the
larger scale in both horizontal dimensions provides a
longer time for PV contour distortion. Another pos-
sibility concerns the inversion of a PVanomaly: Figure
4 uses the same magnitude of PV anomaly, but the
streamfunction amplitude is larger for the broader PV
anomaly.

‘‘Life cycle’’ studies model cyclones from birth to
peak amplitude to decay. These studies typically find
baroclinic growth followed by barotropic decay. This
cycle fits the observed facts that eddies have a net heat
flux and a net momentum convergence. These studies

also reveal a characteristic evolution of the eddy
structure: upper-level amplification compared to the
linear eigenmodes. An explanation is that saturation is
reached sooner at the critical level and at the surface
while upper levels continue to grow. When averaged
over the life cycle, the vertical distribution of the zonal
mean eddy heat and momentum fluxes becomes more
realistic.

Finally, the atmosphere has higher-order processes
than the QG system. The biggest impact of ageostro-
phy is to break symmetries in the solutions. Figure 7D
shows the leading order ageostrophic effects for a
linear model. Ageostrophy causes enhanced eddy
development on the poleward side (mainly by negative
baroclinic conversion on the equatorward side), builds
mean flow meridional shear, and slows down the
wave. Ageostrophy also causes contours to be more
closely spaced around a low and more widely spaced
around a high.

See also

Barotropic Flow and Barotropic Instability (0077).
Cyclogenesis (0129). Cyclones: Extra Tropical Cy-
clones (0128). Dynamic Meteorology: Balanced Flows
and Potential-Vorticity Inversion (0140); Overview (0138);
Waves and Instabilities (0141). Fronts (0039). Quasi-
geostrophic Theory (0326). Vorticity (0449).
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