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Key Points: 24 

California Central Valley heat waves are simulated by 14 climate models 25 

All climate models capture both ways the heat waves develop 26 

Models with higher horizontal resolution but lower stratospheric top tend to perform 27 

better 28 

 29 

Abstract 30 

Previous work considered how well the large scale meteorological patterns (LSMPs) 31 

associated with California Central Valley (CCV) heat waves are captured by a climate 32 

model. Recent work found two distinct types of LSMPs and key parcel trajectories 33 

occurring prior to heat wave onset. This study searches for those two types of heat waves 34 

in two additional reanalyses and in historical simulations by 14 climate models. The 35 

reanalyses develop both types with similar properties; their differences are used as a 36 

conservative estimate of acceptable differences between datasets. All the models develop 37 

heat waves of both types, but the models vary quite a bit in: the separation between the 38 

two types, the magnitudes of the two types, and the frequency of occurrence of the two 39 

types. The best models match a third to a half of the properties found in reanalyses. 40 

Models tend to have lower-valued projections onto the two types than reanalyses, 41 

consistent with a systematic tendency to center the hottest 850 hPa temperatures onshore 42 

instead of just offshore. Models of higher horizontal resolution tend to simulate better the 43 

two types. There is some evidence that models with a low top (with relatively poorly 44 

resolved stratosphere) also simulate the clusters better. 45 

 46 
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 53 

1. Introduction  54 

This article assesses how CMIP5 (Coupled Model Intercomparison Project Phase 5) 55 

models simulate the large scale meteorological patterns (LSMPs) associated with heat 56 

waves affecting the California Central Valley (CCV). A recent review [Grotjahn et al., 57 

2015] discusses extreme statistics, dynamics, model simulations, and trends of LSMPs 58 

associated with North American heat events. That review did not find a systematic study 59 

of the LSMPs generated by climate models affecting the CCV, thereby motivating this 60 

work reported here. 61 

Grotjahn and Faure [2008]; Grotjahn [2011, 2013, 2015] found that regional 62 

scale extreme heat in the CCV is linked to LSMPs that are an equivalent barotropic, 63 

nearly-stationary wave train (ridge-trough-ridge) across the North Pacific and western 64 

North America. A ridge over the region of extreme heat is expected from simple 65 

thermodynamics and is evident in various studies. The ridge being part of a larger pattern 66 

is evident in several studies, such as: Bumbaco et al. [2013] for Washington and Oregon 67 

heat waves; Loikith and Broccoli [2012], Lau and Nath [2012] and other studies of 68 

Midwest US events; Chen and Konrad [2006] and other studies of eastern US events. 69 

Lee and Grotjahn [2015; hereafter LG2015] found that while the LSMP at the 70 

heat wave onset was similar for all extreme events, the LSMP structures leading up to 71 

onset tended to develop in two different ways. They group most events into two such 72 

clusters, with a few events in a ‘mixed’ group sharing traits of both clusters. In all cases, 73 

anomalously hot lower tropospheric temperatures over a region centered offshore near 74 

the NW coast of California and SW coast of Oregon is key to extreme CCV heat waves. 75 

Heat in that region is key because it migrates the ‘thermal trough’ in sea level pressure 76 

(SLP) to the coast and the corresponding SLP gradient opposes a cooling sea breeze 77 

[Grotjahn, 2011]. One cluster of events tends to form from a strong lower tropospheric 78 

hot temperature anomaly that forms in the key region only immediately before onset, 79 
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with cold anomalies prevailing off the NW US coast several days before. In this cluster, 80 

air parcels tend to travel across the Pacific before sinking at the key region just prior to 81 

onset. The second cluster develops hot temperatures in the key region as a southwestward 82 

extension of a hot anomaly in southwestern Canada that exists several days prior. In this 83 

second cluster, air parcels tend to have small horizontal motion with some tending to 84 

migrate from the northeast, east, or southeast while sinking over at the key region while 85 

parcels on the north side of the key region travel from the southwest. Neither formation 86 

process excludes the other process; so a small fraction of events, the mixed type, appears 87 

to be a mixture of the two cluster types. 88 

It should be noted that the two types here differ from the two types (‘daytime’ 89 

versus ‘nighttime’) identified by Gershunov et al. [2009] whose simulation by four 90 

climate models over the CCV is discussed in Gershunov and Guirguis [2012]. In this 91 

study we emphasize simulation of the two ways a ‘daytime’ CCV heat wave forms in that 92 

our events are defined based upon the daytime maximum temperatures. Another notable 93 

difference is Gershunov and Guirguis emphasize sea level pressure whereas upper air 94 

variables associated with LSMPs are emphasized here. 95 

Land conditions at the surface or below influence regional scale heat events like 96 

the CCV heat waves studied here. Land use and land cover change (e.g. from irrigated 97 

farm to urban area) can reduce or amplify the area experiencing extreme heat [Grossman-98 

Clarke et al. 2010; Wang et al. 2013]. Surface energy budget analysis finds that low soil 99 

moisture strongly contributes to hot extremes in some regions, such as much of Europe 100 

[Fischer et al. 2007; Hirschi et al. 2011]. However, soil moisture content is not a major 101 

factor for the CCV because most farmlands in the CCV are heavily irrigated and the 102 

surrounding region receives little or no precipitation every summer.  103 

The CCV is geographically complex (figure 1) so local thermally-driven 104 

circulations caused by terrain slopes (mountain-valley winds) are mixed with land-sea 105 

breezes. Because hot spells are associated with easterly flows [Grotjahn, 2011] air 106 

moving in that direction sinks down into the Central valley, warms adiabatically, and 107 

opposes a cooling sea breeze while also lowering the subsidence inversion, these 108 

conditions all favor the formation of extreme hot spells. This complex topography is not 109 
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resolved by climate models however the larger scale pattern (i.e. the LSMPs) always 110 

associated with CCV heat waves is resolved and that is why this research focuses upon 111 

those patterns. 112 

Grotjahn [2013, 2015] examined all CCV hot spells that develop in the National 113 

Center for Atmospheric Research (NCAR) Community Climate System Model version 4 114 

(CCSM4). The CCSM4 hot spells were compared to corresponding fields in the National 115 

Climatic Data Center (NCDC) station data as well as the NCAR/NCEP reanalysis 1 116 

dataset [Kalnay et al. 1996]. (NCEP is the National Centers for Environmental 117 

Prediction.) This NCAR/NCEP reanalysis dataset will be called NNRA1 hereafter. 118 

LSMPs, surface temperatures, and a ‘circulation index’ that measured how similar the 119 

pattern on a given day was to the ensemble mean of extreme hot spells in two reanalysis 120 

fields were tracked in historical and future climate simulations. The LSMPs have such 121 

large scale structure (spanning the Pacific and much of North America) that they are 122 

resolved directly by the model, and while some details of the LSMP are sensitive to local 123 

processes (such as: the CCV, which is missing in the CCSM4 topography and the model 124 

resolution being too coarse to resolve sea breezes) the LSMPs in the model-generated 125 

heat waves are shown in Grotjahn [2013] to be very similar to the corresponding LSMPs 126 

in NNRA1 data during observed CCV heat waves. Hence, our focus on the LSMP avoids 127 

dependence upon the precise surface temperature values which are strongly affected by 128 

local processes that may be missing or poorly simulated by a model.  129 

This work builds upon that earlier work by expanding the analysis to include 13 130 

more models and by specific focus upon how well the models represent the LSMPs of 131 

these two clusters of heat wave events. Including more models than Grotjahn [2013] has 132 

obvious benefits such as broader comparison of different model formulations present in 133 

the CMIP5 datasets and models used by many more studies. Separating some of the 134 

analysis on the basis of the two cluster types is done because the dynamical development 135 

immediately prior to the heat wave onset is very different for the two clusters. Hence, it is 136 

possible (and it will be seen) that individual models capture the dynamics of each cluster 137 

in different ways. The differing model performance can provide clues to model 138 

improvements and output adjustments. 139 
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The next section describes the data and the methods for obtaining and comparing 140 

the LSMPs for the two types of clusters both in the reanalysis and the model data. The 141 

third section presents the main results. Finally there is a brief summary. 142 

 143 

2. Data and Methods 144 

Heat wave events considered in this study are exactly same with the events in our prior 145 

paper (LG2015). Daily maximum near-surface temperature time series were used to 146 

isolate the CCV heat wave events at 15 National Oceanic and Atmospheric 147 

Administration (NOAA) Cooperative Observer Program (COOP) stations covering the 148 

whole CCV area (Figure 1). These data are post-processed for quality control and 149 

archived at the NCDC as part of the U.S. Historical Climatology Network (for details, see 150 

Menne et al. [2009] and references therein). The methodology to isolate the events is 151 

discussed below where the extension of the methods to climate model output is described. 152 

This study mainly uses the NNRA1 [Kalnay et al. 1996] for verification and 153 

comparison with model simulations of the upper-air LSMPs for each of the two heat 154 

wave clusters. NNRA1 has adequate time and space resolution: 6 hours, 2.5 degrees 155 

longitude, and 2.5 degrees latitude resolution. LSMPs evolve over several days and have 156 

half-wavelength scale greater than 20 degrees in both latitude and longitude. Boreal 157 

summer season for the CCV used extends from June through September (JJAS, 122 days). 158 

The 34 years of 1977 to 2010 are considered. NNRA1 data are available at 159 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html.  160 

Two other reanalysis datasets, the NCEP/DOE AMIP-II Reanalysis (NDRA2; see 161 

Kanamitsu et al. [2002]) and ERA-Interim produced by the European Centre for 162 

Medium-Range Weather Forecasts (ECMWF) described by Dee et al. [2011] are also 163 

analyzed. These other datasets do not extend as far back in time, hence more events are 164 

captured by the NNRA1 data emphasized. These other two reanalyses are presented for 165 

two similar reasons. First, they confirm the fidelity of two types of heat waves grouping. 166 

Second, they establish a range of variation that could be expected with different models 167 

representing the same events. All three reanalyses have the same 6 hourly temporal 168 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html


7 
 

resolution. The spatial resolutions differ and are 2.5 degrees longitude by 2.5 degrees 169 

latitude for NDRA2 and 1 degree longitude by 1 degree latitude for ERA-interim. There 170 

are 32 summer seasons from 1979 to 2010 considered in these two reanalyses. 171 

Availability of data online is found at http://apps.ecmwf.int/datasets/data/interim-full-172 

daily/ for ERA-Interim and 173 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html for NCEP-DOE. 174 

Phase 5 of the Coupled Model Intercomparison Project (CMIP5; Taylor et al. 175 

[2012]) provides an ideal opportunity to assess how well state-of-the-science 176 

Atmosphere-Ocean General Circulation Models (AOGCMs) represent the two types of 177 

CCV heat waves. This study analyzes historical simulations by 14 models (listed in Table 178 

1) which are available through the portal, the Earth System Grid - Center for Enabling 179 

Technologies (ESG-CET; at http://pcmdi9.llnl.gov/). Since the common running period 180 

of CMIP5 historical simulations is 1950 to 2005, we choose the 34 summer seasons from 181 

1972 to 2005 for the comparison with NNRA1. Standard CMIP5 output of 6 hourly data 182 

only has 3 pressure levels (250, 500, and 850 hPa). LG2015 uses data at 700hPa and 600 183 

hPa so an adjustment is made here to replace data at those levels with 850hPa and 500hPa 184 

data. These substitutions make the cluster mean fields different from those of LG2015 but 185 

still similar in major features. The mean fields used in defining the clusters are discussed 186 

below as are representative time sequences so that the reader need not consult LG2015 to 187 

visualize the differences in the primary features of the LSMPs for the two cluster types. 188 

The CMIP5 data archived vary from model to model. The focus here upon the 189 

LSMPs prior to the heat wave onset requires historical simulations of upper air 190 

temperature and zonal wind to be available at 6 hourly intervals. These data are available 191 

to us from 14 models at their own horizontal resolution. The models are listed in Table 1 192 

and ordered from higher to lower resolution. The models also have differing numbers of 193 

vertical levels. CMIP5 models are classified into either high-top (HT) or low-top (LT) 194 

based on their representation of the stratosphere and the threshold between HT and LT is 195 

at 1 hPa of their lid height [Charlton‐Perez et al., 2013; Lee and Black, 2015]. This study 196 

examines the dependency of the heat wave classification in CMIP5 simulations on both 197 

horizontal and vertical top.  198 

http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://apps.ecmwf.int/datasets/data/interim-full-daily/
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
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From observations, 28 heat wave events were identified from 15 NCDC COOP 199 

stations (figure 1) using the criteria that at least 6 stations must surpass the 95% level for 200 

at least 3 days using normalized daily maximum surface temperature anomalies. The 201 

anomalies are formed by subtracting the long term daily mean for the calendar date. The 202 

normalization is by the station’s corresponding standard deviation. Further details are in 203 

LG2015.  Local surface maximum temperatures corresponding to the NCDC station 204 

dataset are not available for model simulations. Instead, daily maximum near surface 205 

temperature time series at grid points around the CCV area are used for individual 206 

model’s simulations.  207 

The grid points chosen were a partially subjective decision based on these 208 

considerations: the ‘box’ surrounding the grid point (and represented by it) must be 209 

mainly over the CCV, the grid point must have minimal or no oceanic influence, and 210 

sufficient points should be chosen to have a balance of information from the southern and 211 

northern parts of the CCV. The ‘box’ represented by each grid point used is indicated by 212 

shading in the supporting document figure. Several topographic heights are also 213 

indicated. Obviously, none of the models can resolve the low-elevation, nearly flat CCV, 214 

but instead there is a broad slope from the sea to higher elevations to the east. It is this 215 

lack of a CCV that motivates our focus on LSMP properties, as mentioned above. 216 

Since grid resolution and origin vary between models, the number of points 217 

within the CCV for each model was manually determined and is indicated in Table1. The 218 

number of grid points within the CCV area is proportional to the horizontal resolution as 219 

expected. Hence, the criterion for minimum number of grid points exceeding the 95% 220 

threshold was adjusted for each model based on the number of CCV grid points in the 221 

model (also in Table 1). The duration criterion was unchanged: each of a minimum 222 

number of grid points must exceed its own 95% threshold for at least 3 consecutive days.  223 

Average CCV heat wave duration in most models is similar to that observed. The number 224 

of events is also similar to observed, though two models had notably more frequent hot 225 

spells; the models whose number of events are greater or less than observed by 15% are 226 

marked with asterisks in Table 1. The average duration of events, ~4 days, was very 227 
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similar across the models, but four days is only one day more than the minimum number 228 

specified in the event identification criteria. 229 

In LG2015, 28 heat wave events are assigned to groups based on the pattern 230 

dissimilarity of three target fields using the K-means clustering technique. Although 231 

model running is executed at multiple levels in sigma coordinates, the CMIP5 outputs of 232 

6-hourly data are available at only three standard pressure levels as mentioned before. To 233 

maximize the number of models surveyed, we adjusted our cluster criteria to match the 234 

paucity of levels available for some models. This study employs three anomaly ‘target 235 

fields’ into the cluster analysis: -2 days zonal wind at 500 hPa, -2 days temperature at 850 236 

hPa, and  -1 day temperature at 850 hPa over the domain of 140°W-100°W, 25°N-60°N. 237 

The negative sign indicates time before event onset; hence -2 days is two days before 238 

event onset. As discussed in LG2015, the clusters differ not in the pattern at onset, but in 239 

how the pattern at onset is achieved. As stated above, the ‘target fields’ used by LG2015 240 

are different, the corresponding fields used by LG2015 are: -2 days 700 hPa zonal wind, -241 

2 days 600 hPa temperature, and -1 day 700 hPa temperature over 150°W-100°W, 20°N-242 

60°N domain. This change was necessitated by the lack of CMIP5 data for some models 243 

at 700 and 600 hPa. As will be seen, the clustering is not sensitive to this change of fields 244 

and domain, providing some proof of the robustness of the two clusters. The change 245 

applied to NNRA1 data had negligible impact on projections of individual events onto 246 

each cluster mean and no event switched to a different cluster by using these different 247 

levels. When applying the same clustering procedure, the clustering membership of 248 

events is exactly the same as LG2015, which supports the robustness of our heat wave 249 

events classification. Once cluster membership is defined, two cluster composite means 250 

are calculated from the NNRA1 data.  251 

In a study of regional climate model simulations of hot days during winter, 252 

Loikith et al. [2015] aggregate results from events together and then use normalized root 253 

mean squared error (RMSE) as the comparison metric. RMSE is a gross measure of 254 

difference which does not fit the purposes of this study. Here, the emphasis is upon 255 

comparing the patterns (models versus reanalyses LSMPs) while showing the range of 256 
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simulated events relative to the two types of heat waves observed, so a metric suited to 257 

that comparison is used. 258 

Spatial projection analysis is applied to sort into the two clusters the individual 259 

events in each of the two additional reanalyses and 14 CMIP5 simulations. Projection 260 

coefficients (𝑝𝑝𝑘𝑘,𝑗𝑗) are calculated for the same domain of the ‘target fields’ above.  261 
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where 𝑘𝑘 indicates a cluster; 𝑗𝑗 indicates an event; 𝑖𝑖 is a grid point in the domain; n is the 263 

total number of events; N is the total number of grid points in the domain; x is the 264 

variable of an individual event (j) from a dataset to be projected onto the corresponding 265 

variable y of the cluster (k) mean field calculated from NNRA1 data.  Since the individual 266 

simulations have their own grid structure, the composite mean field of a variable (y) is 267 

interpolated to the model grid resolutions in advance for the projection analysis. There 268 

are 3 combinations of variable, level, and time before onset. The resultant three 269 

projection coefficients are averaged and plotted. The main difference from a pattern 270 

correlation is the equation above does not have the x squared summation in the 271 

denominator, therefore the spatial projection includes amplitude information in addition 272 

to pattern similarity.   273 

In a scatter plot of projection coefficients, events are plotted based upon their 274 

projection coefficient for each cluster’s mean. Many events have much larger coefficient 275 

onto one cluster mean than the other and are designated as belonging to the cluster for 276 

which that event has larger cluster projection. A few events are assigned as ‘mixed’ 277 

events when the difference of two correlation coefficients is less than 0.30461. This 278 

threshold is deduced from the scatter plot of NNRA1. Events having both negative 279 

coefficients are sorted into the ‘mixed’ as well since they do not correspond to either 280 

cluster. (No observed event has this property, but some model events do.) Except for 281 

these mixed events, individual events fall into the same clusters for all three reanalyses, 282 
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though the event projections do change. This change between renanalyses is useful to 283 

gauge the spread of events in scatter plots of CMIP5 data.  284 

This study examines the composite maps for the two different clusters. These 285 

maps are used both for the projection coefficient calculation and also to show 286 

synoptically (if subjectively) how the heat waves develop in each model. These maps 287 

clearly show differences of corresponding LSMPs and related dynamics. Differences are 288 

seen between the two clusters and also between reanalyses and models. 289 

 290 

3. Heat Wave Types in Reanalyses and Model Simulations 291 

Figure 2 shows the LSMPs for three combinations of variable, level, and time before 292 

onset using NNRA1 data. Only those grid points of each field that are shared by at least 293 

2/3 of the members in each cluster are shaded in the plotting. The box shows the smaller 294 

region used by the clustering algorithm. The shading is based on sign counts; which 295 

examine the sign of each member of an ensemble and adds the signs of all members at 296 

each grid point. If the anomaly for a particular event is positive, the value is +1, if 297 

negative it is -1. Hence if a cluster has six members and four members have positive sign 298 

and two members have negative sign at a grid point, the sign count is +2. To facilitate 299 

comparison with sign counts for other reanalyses and models having different numbers of 300 

events, the sign count is divided by the total number of events to obtain the sign count 301 

fraction. In this example the sign count fraction is 1/3 which corresponds to 2/3 of the 302 

members having a positive sign. Figure 2 emphasizes parts of the LSMPs that are 303 

consistent among at least 2/3 of the events comprising that cluster (equivalent to a sign 304 

count fraction greater or equal to 1/3 of the events in the composite). The clusters have 305 

clearly different evolutions towards a similar pattern at onset. 306 

 In cluster one (left column of figure 2) there is often a pre-existing thermal trough 307 

in the Gulf of Alaska (see top row of figure 3) and so the zonal wind has strong westerlies 308 

to the south of strong easterlies. (LG2015 show a corresponding geopotential height 309 

trough in their figure 9.) The trough has cooler temperatures across the Gulf of Alaska 310 

into western Canada one and two days prior to onset. 311 
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 In cluster two (right column of figure 2) there is a strong positive temperature 312 

anomaly over SW Canada and NW US with an associated geopotential height ridge (e.g. 313 

figure 9 in LG2015) for several days prior to CCV heat wave onset, hence strong 314 

westerlies are north of easterlies (in the anomaly fields) prior to onset. The temperature 315 

remains hot over Canada and NW US in contrast with the cool temperatures that prevail 316 

there in cluster one. 317 

 The region outlined by the boxes in figure 2 is thus chosen to highlight 318 

differences prior to the onset of the CCV heat wave. This box location is selected to 319 

emphasize where the members of one cluster are consistent and different from the 320 

members of the other cluster. Other domains were tested and the cluster membership is 321 

not sensitive to the choice of domain. 322 

 Figure 3 shows the time evolution of the ensemble mean for cluster one in 323 

NNRA1 data as well as 3 models. The NCAR CCSM4 model is shown to connect this 324 

work with Grotjahn [2013] and mainly because it is a popular model (a special issue of 325 

Journal of Climate is devoted to this model, described by Gent et al. [2011]). HadGEM2-326 

CC is also based on a popular model frequently used in model-intercomparison studies in 327 

diverse research subjects [e.g. Ahlström et al., 2012; Bellouin et al., 2011; Charlton‐328 

Perez et al., 2013; Dai, 2013; Gillett and Fyfe, 2013; Kawatani and Hamilton, 2013; 329 

Kawazoe and Gutowski Jr, 2013; Kim and Yu, 2012; J-Y Lee and Wang, 2014; Manzini et 330 

al., 2014; Mishra et al., 2014; Purich et al., 2014; Woollings et al., 2014] and this version 331 

includes Troposphere, Land Surface and Hydrology, Aerosols, Ocean and Sea-ice, 332 

Terrestrial Carbon Cycle, and Ocean Biogeochemistry models. These two models have 333 

some of the better simulations of the LSMP evolutions based on qualitative comparison 334 

as well as our cluster projection results discussed below. A third model is chosen to 335 

bracket the LSMP simulation discussion since this model has the lowest resolution and 336 

consequently is one of the lower-performing models based on the cluster projection 337 

measure results discussed below.  338 

 The NNRA1 data in figure 3 show a pre-existing cold anomaly in the Gulf of 339 

Alaska in most members of cluster one that splits with a portion remaining over the north 340 

Pacific (amplifying a trough there, not shown) and the remaining portion migrating 341 
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eastward across Canada. The temperature anomaly in the key region just offshore of 342 

northern California develops only within the last 2 days. All the models have this prior 343 

cold anomaly over western Canada, extending into the north Pacific (as selected by the 344 

clustering algorithm) but there is more consistency in this feature by the CCSM4 and 345 

HadGEM2-CC models than for FGOALS-g2. Compared to the reanalysis, the models are 346 

more consistent with this feature. All models develop the warm anomaly just prior to 347 

onset, again as captured by the cluster algorithm. A difference from NNRA1 that is 348 

common to all models is the temperature anomaly is centered more over the land in the 349 

models than it is in reanalysis data, a problem noted for CCSM4 by Grotjahn [2013, 350 

2015].  351 

 In cluster two the pre-existing strong temperature anomaly in SW Canada and 352 

NW US is present in NNRA1 and all models (as expected from the projection coefficient 353 

used to populate the ensemble means shown next) (Figure 4). The north Pacific cold 354 

anomaly -- outside the domain used for the clustering -- is somewhat better captured by 355 

FGOALS-g2 than by the CCSM4 and HadGEM2-CC models at times prior to onset; 356 

while the cold anomaly is a bit too far south in FGOALS-g2 it is more consistently 357 

present in combination with the warm anomaly, suggesting a more consistent wave train 358 

in geopotential than the other two models. All models develop the warm anomaly on the 359 

southern side of the pre-existing anomaly and over the key region near the northern 360 

California coast just prior to onset. Interestingly, the anomaly for CCSM4 has a lobe 361 

offshore not present in the other two models (and not in the other cluster for this model) 362 

but somewhat closer to reanalyses positioning. 363 

 Figure 5 shows how each event projects onto the two NNRA1 cluster means. The 364 

panels are scatter plots of the two projection coefficients for the three reanalyses and for 365 

the 14 models examined here. Other information plotted includes: dashed lines that 366 

separate members of each cluster from each other and identify ‘mixed’ events within the 367 

dashed lines (or having negative projection onto both NNRA1 cluster means), grey 368 

triangles for the average projections for each cluster (labeled ‘centroids’), and a line 369 

showing the distance between these cluster mean projections (between centroids). Text 370 

information identifies the fraction of events in that dataset that belong to each cluster.  371 
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 The reanalyses panels in figure 5 are intended to illustrate the differences that 372 

may arise from different models treating the same events. There is a tendency for ERA-373 

interim to have larger magnitudes for the dominant projection for each member in each 374 

cluster; while the amplification is less consistent for NCEP-DOE data, the cluster means 375 

are also larger for these data. All reanalyses have about half the events classified as 376 

cluster one and about 3/8 of the events as cluster two. The 15-30% increased magnitude 377 

on average is apparent in the table 2 which has the locations of the centroids for each 378 

reanalysis. Also apparent in table 2 is that the two clusters have little projection upon 379 

each other, indeed the projection of one upon the other has negative sign. Hence the two 380 

clusters are independent groups. Table 2 shows that on average, mixed events in the 381 

NCEP-NCAR and ERA-interim data have comparable projection onto the two cluster 382 

means and the projection is positive, and in the case of NCEP-DOE data it is not small. 383 

The mixed projection coefficients reinforce our designation of the mixed events as 384 

hybrids combining properties of both clusters. The larger amplitude of the projections in 385 

ERA-interim and NCEP-DOE data also increase the scatter of events about the cluster 386 

mean (or centroid) which tends to be slightly larger about cluster two. The rightmost 387 

column in table 2 shows a good separation between the cluster means; the centroid 388 

separation being about three or more times the average spread of events about their 389 

respective centroids.  390 

 The model panels in figure 5 are ordered beginning with the highest resolution 391 

models (top row) progressing to the lowest resolution model at the right end of the 392 

bottom row. All the models have members within each of the two clusters. There is some 393 

tendency for the clusters to be better separated for the models with higher resolution. This 394 

trend with declining resolution causes two models of lowest resolution to have the most 395 

members in the mixed category. In addition, the lower resolution models tend to have 396 

smaller separation between the centroids than higher resolution models, though this trend 397 

is less consistent. Except for CCSM4 and bcc-csm1-1-m, all the models on the top two 398 

rows have most of their members in cluster one, similar to the reanalyses; those two 399 

exceptions have more members of cluster two. Of the lowest-resolution models on the 400 

bottom row, three have most of their members in the mixed category. Those lower-401 
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resolution models are having difficulty separating the two cluster types, though they and 402 

all other models do produce events that are clearly members of each cluster. 403 

 The models in table 2 have clusters with similar centroids as the reanalyses that 404 

are well separated, though both properties are reproduced least well by the lowest 405 

resolution model. Like the reanalyses and as might be expected from the criteria for 406 

populating this category, the average of the mixed events projects similarly onto both 407 

cluster means. The distance between centroids tends to decline with lower resolution as 408 

does the scatter about each event, so that spread around each centroid remains roughly a 409 

third (or less) the size of the distance between centroids (GFDL-CM3 is an exception, 410 

being only about half). All the models have less separation between the centroids than 411 

any of the reanalyses. Further, visual inspection of figure 5 creates the impression that for 412 

most models the separation between the clusters of the points for each of the models is 413 

less distinct than for the reanalyses. Models having smaller separation between centroids 414 

also tend to have smaller values for the location of the centroids, meaning that those 415 

models not only have trouble separating the clusters, but tend to have weaker amplitudes 416 

of the LSMPs than in reanalyses. Several models seem to prefer one cluster over another; 417 

MRI-ESM1, MIROC-ESM, inmcm4,  FGOALS-g2 have trouble producing cluster two 418 

with the pre-existing SW Canada hot anomaly; whereas bcc-csm1-1-m, bcc-csm1-1, 419 

maybe CCSM4 and GFDL-ESM2M have some trouble producing a distinct cluster one.  420 

 In a prior study, Lee and Black [2013] found two primary modes of boreal winter 421 

extratropical low-frequency variability: the North Atlantic Oscillation (NAO) and 422 

Pacific-North American (PNA) patterns were unexpectedly better simulated in models 423 

with a low top (LT in Table 1) than those with higher stratospheric vertical resolution 424 

(HT in Table 1). Any improvement by LT is hard to see in Table 2. MRI-ESM1 (an HT 425 

model) and bcc-csm1-1-m (a LT model) have comparable resolution while the centroid 426 

locations, spread about them, and distance between centroids are slightly better (more 427 

similar to all 3 reanalyses) in the LT model; on the other hand the membership of the 428 

clusters is perhaps a little worse in the LT model. Similarly, HadGEM2-CC (a HT model) 429 

has a cluster membership and most properties in Table 2 that are generally similar to the 430 

reanalyses.  GFDL-CM3 (a HT model) does seem to perform less well in Table 2 431 
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measures than the other GFDL models (all LT) with comparable resolution, though the 432 

qualitative impression from Figure 5 is that the two LT GFDL models seem better than 433 

the HT model.  434 

In short, lowered resolution has a tendency to degrade the simulation of distinct 435 

heat wave clusters and possibly HT has a degrading effect as well, but there are likely 436 

other factors causing the differences seen. 437 

Figure 6 is produced in an effort to summarize key information from both Table 2 438 

and Figure 5. The abscissa is the ratio of events in cluster one divided by the events in 439 

cluster two. The ordinate is the distance between the two centroids. Labels for the three 440 

reanalyses (with NNRA1 marked by a multiplication symbol) and for the 14 models 441 

include other information such as resolution (lower number is higher resolution), whether 442 

it is a LT or HT model, and whether the model (grey dot) has more mixed cluster 443 

members than one or more of the clusters. The three reanalyses are grouped near the top 444 

around ratio 1.3, reflecting the excellent separation between clusters and similar 445 

membership size in each cluster type. None of the models has as great a separation 446 

between average cluster projections, though bcc-csm1-1-m, the second highest resolution 447 

model, comes closest and yet it has more mixed events than cluster one events. An 448 

arbitrary rectangle centered on the NNRA1 data is drawn to separate the half of the 449 

models that seem closer to the reanalyses from the half that are further from the 450 

reanalyses. Standard deviations of two metrics (0.86 for the ratio of events and 0.21 for 451 

the distance between two centroids) within 14 models are referenced for the rectangle 452 

range. The horizontal rectangle range is set to two values with the distance of one 453 

standard deviation (0.86) from NNRA1. The vertical range is set to two values with the 454 

distance of two standard deviations (0.43) from NNRA1. A rectangle is arbitrary and not 455 

ideal, but the intent (in combination with the dot darkness) is to isolate models within that 456 

have both a good ratio between the cluster membership and good separation between 457 

them. This rectangle shows a tendency to select models with higher resolution but there 458 

are exceptions (lower resolution models: bcc-csm1-1, GFDL-ESM2G, and GFDL-459 

ESM2M are within the rectangle; higher resolution MRI-ESM1 is outside). There is some 460 



17 
 

tendency for HT models to be outside the rectangle (the one exception being HadGEM2-461 

CC) but there are LT models outside as well.  462 

Comparing figure 6 with Table 2, six of the seven models in the rectangle have 463 

the seven highest fractions of their nine properties in Table 2 within the range of the 464 

reanalyses. (The exception is bcc-csm1-1, the lowest resolution model in the figure 6 465 

rectangle. The model not in the rectangle, but in the top seven matching reanalyses ranges 466 

is MRI-ESM1, the second highest resolution model.) As above, our use of ranges of 467 

reanalyses values is intended as a rough indicator of ranges that have acceptable 468 

deviation from NNRA1 data. If anything, this acceptable range is overly conservative, 469 

since the reanalyses are covering the same events (with a few extra in NNRA1 data due 470 

to its longer duration). The bcc-csm1-1-m has seven of nine values within reanalyses 471 

ranges while GFDL-ESM2M has six. The models with the largest deviation from the 472 

reanalyses ranges tend to be those models with the three lowest resolutions; the exception 473 

is the high top model MRI-ESM1 (mixed centroid projected onto cluster one) a model 474 

outside the figure 6 rectangle (because it has so few cluster two events). The lowest 475 

resolution model has the four (out of nine) largest deviations from the reanalyses; no 476 

other model has more than one. 477 

As stated above, different paths arrive at a similar LSMP at event onset, 478 

especially so over the key area near the NW coast of California. The discussion above 479 

examines the models’ treatment of the two types of LSMPs that tend to occur prior to 480 

onset. Since the LSMPs at onset are so similar, they can be lumped together when 481 

examining that key region. Grotjahn [2011] develops, describes, and tests a ‘circulation 482 

index’ (hereafter CI). To obtain CI one calculates then combines un-normalized 483 

projections of the 850 hPa temperature and 500 hPa meridional velocity anomalies of 484 

each individual event upon corresponding ensemble averages of events in NNRA1 data 485 

over key regions. The key regions are where the NNRA1 ensemble members consistently 486 

have large anomalies in these two variables. Hence CI measures how similar a given 487 

event is to the ensemble average of events in NNRA1 data over these key areas. The 488 

stronger the event, the larger CI tends to be. Negative values of CI mean the event has 489 

anomaly patterns that have opposite sign to the ensemble average of NNRA1 data over 490 



18 
 

more of the key areas than not. Grotjahn [2011] also discusses the physical basis for the 491 

CI, in that it samples quantities and areas related to amplifying CCV heat: by suppressing 492 

the sea breeze and lowering the subsidence inversion. Grotjahn [2011] found CI values to 493 

be a good proxy for how strong the larger environment is to develop a CCV heat wave.   494 

Figure 7 shows histograms of CI values at onset for all the events in a given 495 

dataset. For reference, CI values for each of the three reanalyses during this period are 496 

calculated. Histograms provide a useful visual impression of the distribution; quantitative 497 

information relating to this figure is provided in Table 3. As with onset data, the ranges in 498 

the reanalyses of CI properties will be used as a conservative estimate of the range of 499 

acceptable model values.  500 

With the chosen bin ranges in CI, all three reanalyses have a prominent central 501 

peak range (CI=1.0 to 1.25) with the next higher interval having slightly more members 502 

than the next lower interval. Of the better performing half of the models (based on the 503 

rectangle of figure 6) prior to onset, three of these models have distributions that match 504 

these properties of the reanalyses. (The three being CNRM-CM5, HadGEM2-CC, and 505 

bcc-csm1-1.) Two models, GFDL-ESM2G and GFDL-ESM2M have the most number of 506 

their events in the next higher range. GFDL-ESMG shows a positive skew, which is 507 

opposite to NNRA1. For GFDL-ESM2M, only the interquartile range (IQR) is unusually 508 

high; i.e. the CI ranges chosen may be exaggerating the visual difference seen in figure 7. 509 

Two models have notably different distributions: CCSM4 and bcc-csm1-1-m; each 510 

having a hint of a bimodal distribution. CCSM4 has two ranges with the most number of 511 

events; though the model has the highest average value and third quartile (Table 3) the 512 

model has two other scores (#<0.9 and skew) that are within the acceptable range. The 513 

bimodal structure of CCSM4 results from the model handling cluster two differently from 514 

cluster one. Of the two peaks in figure 7, the lower valued peak matches the peak in 515 

cluster two CI values and the upper-valued one matches the peak in cluster one CI values. 516 

However, the largest CI value is a cluster two event. So, especially with these small 517 

numbers of events, one cannot say that one cluster is generally larger than the other at 518 

onset in CCSM4. No other systematic difference was found between cluster one and 519 

cluster two in CI values. The two highest resolution models have the two highest mean 520 
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values of CI among the models. Higher mean values of CI are generally consistent with 521 

larger separation between the cluster means (the ordinate of figure 6). No model has more 522 

than four distinct parameters in Table 3 that are within the acceptable range. Two of the 523 

models selected by the figure 6 rectangle (bcc-csm1-1-m and GFDL-ESM2M) have none 524 

of their seven distinct parameters within the reanalyses ranges. All but the two highest 525 

resolution models have too many events with CI <0.9 at onset; low values are consistent 526 

with the model temperature anomaly being centered too far onshore instead of in the key 527 

region. IQR and standard deviation are two ways of measuring the spread of CI values, 528 

these quantities are quite consistent in NCEP reanalyses, but less so for ERA-Interim. 529 

Models (except one: MIROC-ESM) find the IQR to be larger than one standard deviation, 530 

but how much larger varies a lot; most models are within the IQR range of the reanalyses 531 

and only one model (CNRM-CM5) is in the range of the standard deviation. The two 532 

NCEP reanalyses differ rather strongly in the skew, with ERA-Interim having an 533 

intermediate value. Four models are in the reanalyses range of skew, and three out of the 534 

four are in the rectangle of figure 6. 535 

 536 

4. Summary 537 

A prior study (LG2015) found two distinct ways that the large scale meteorological 538 

patterns (LSMPs) develop prior to the onset of heat waves affecting the California 539 

Central Valley (CCV). This study examines how well these two clusters of development 540 

are simulated in 14 climate models as well as how the patterns vary between three 541 

reanalyses prior to and at event onset. Another study [Grotjahn, 2013] examined how a 542 

single climate model captured the LSMPs at the onset of CCV heat waves; this study 543 

expands that analysis to thirteen additional models. 544 

Individual events are identified for each model and with a few exceptions, most 545 

models develop a similar number of events during a 34 year period of historical 546 

simulation as for comparable periods in reanalyses. Pattern projection coefficients are 547 

calculated by projecting each event onto each cluster mean found for the NCEP-NCAR 548 

reanalysis (NNRA1) data. The pattern projection was calculated for times prior to onset 549 
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over regions that strongly distinguish the two cluster means. The relative sizes of the 550 

projections for each cluster mean defined whether an event matched cluster one, cluster 551 

two, or was some hybrid structure labeled ‘mixed’. The two clusters are distinct, having 552 

small, negative projection upon each other. 553 

No model outperforms other models in all (or even most) quantities tested here. 554 

All models produce some events belonging to each cluster. However, the proportions of 555 

events in the three categories (cluster one, cluster two, mixed) varied. All three reanalyses 556 

have slightly more members of cluster one, in which onset develops rapidly as parcel 557 

trajectories cross the north Pacific and sink off (and adjacent to) the northern California 558 

coast, a region critical for development of the CCV heat wave [Grotjahn, 2011; LG2015]. 559 

All three reanalyses have somewhat fewer cluster two events (than cluster one), cluster 560 

two events are characterized by southward expansion of a pre-existing, strong, hot 561 

anomaly centered in SW Canada and NW US. The reanalyses contain a small number of 562 

‘mixed’ events that cannot be clearly classified into either cluster. The ratio of cluster 563 

type varies from model to model. For several models, the ratio between clusters one and 564 

two is comparable to those in the reanalyses. For a few models, one cluster occurs 565 

notably more often than the other. There is a systematic tendency for the cluster means in 566 

the models to have smaller projections than any of the reanalyses, indicative of a 567 

tendency for the models to have LSMPs that are either too weak or shifted horizontally. 568 

In the latter case, examination of the lower tropospheric temperature patterns finds the 569 

models tend to center the warm anomaly onshore instead of just offshore.  570 

While no model clearly outperforms all others, there is a tendency for models 571 

with higher resolution to perform better. Generally, higher resolution models: have better 572 

fractions of their events in the two cluster categories, have larger separation between the 573 

mean projections of the members of each cluster, and have larger amplitude of their 574 

LSMPs. The larger amplitudes were seen for both individual cluster projections prior to 575 

onset and a circulation index applicable at event onset. Quantities intended to measure 576 

how well models capture the two types of clusters were used to divide the models into 577 

better performing and less well performing halves. Most of the models in the better half 578 

tended to do well at onset as well. However, a few exceptions to these conclusions are 579 
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found. There is some indication that HT models do not simulate the cluster means as well 580 

as LT models but again exceptions occur. For example, the highest resolution HT model 581 

was outperformed (by the measures used here) by LT models with much lower resolution, 582 

however one HT model did make the ‘better half’ group. 583 
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Figure Captions 743 

Figure 1 A map the CCV NCDC stations considered in this study. Shading indicates 744 

topographic elevation, with the scale indicated on the right edge of the plot. 745 

 746 

Figure 2 Cluster composite means of three anomaly fields in NNRA1 data. These three 747 

combinations of variable, level, and time before onset are used to sort heat wave events 748 

of three Reanalyses and 14 CMIP5 simulations: U500 (-2day), T850 (-2day), T850 (-749 

1day).  The domain enclosed by purple box (150W-100W, 20N-60N) is used in a 750 

projection analysis. Contours are only drawn using grid points having sign count 751 

fractions with magnitude over 1/3 of cluster member numbers are plotted. Contour 752 

intervals are 2 m/s and 1K. 753 

Figure 3 Composite means of T850 for the events of cluster one. NCEP-NCAR 754 

Reanalysis is considered as a reference. Bottom row shows composites at event onset; 755 

middle row are composites one day before onset; top row is two days before onset. Only 756 

grid points having sign count fractions with magnitude over 1/3 of the number of cluster 757 

members are colored (sign count fraction of -1/3 means two thirds of the members have 758 

the same negative sign; sign count fraction of 0.9 means that 95% of the cluster members 759 

have the same positive sign). In this cluster the strong warm temperature anomaly 760 

develops in the ‘key area’ off the N California coast only in the last day before event 761 

onset. 762 

Figure 4 Same as Fig. 3 except for the events of cluster two. This cluster has a pre-763 

existing strong warm temperature anomaly in SW Canada and NW US. 764 

Figure 5  Scatter plots of the two cluster projection coefficients for each of the events in 765 

three reanalyses and 14 individual models. Projections are calculated with respect to the 766 

cluster means in the NNRA1 (‘NCEP-NCAR’) data. A dot marks each event in cluster 767 

one, a circle marks each event in cluster two, and mixed events are marked with a '+' 768 

symbol. Mixed events lie within the parallel dashed lines, whereby the projection 769 

coefficients are too similar to distinguish the event as being one cluster type or the other. 770 
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Each triangle represents the mean or ‘centroid’ of the projection coefficients in each 771 

cluster. Grey solid lines connect two triangles, which represents the distance between the 772 

two cluster mean locations. Dotted lines mark zero projection onto each cluster mean. 773 

Text labels indicate the fraction of all events in that dataset that are present in each of the 774 

three categories, ‘clust1’ refers to cluster one (e.g. figure 3); ‘clust2’ refers to cluster two 775 

(e.g. figure 4); ‘mixed’ refers to mixed events. 776 

Figure 6 Scatter plot of frequency ratio of cluster one and two versus and distance 777 

between cluster one and two. The center of each cluster is an average of projection 778 

coefficients for all events within a cluster (as shown in Figure 5). A multiplication 779 

symbol marks NNRA1 reanalysis (‘NCEP-NCAR’) data. Black/grey dots are for other 780 

reanalyses and models. Grey dots are drawn for models when their mixture cluster does 781 

not have the fewest members. Grey dashed rectangle is drawn centered on NCEP-NCAR. 782 

Models in that rectangle are the half of the models that separate the two clusters relatively 783 

clearly. Smaller (larger) number before model name represents higher (coarser) 784 

horizontal resolution while “H” or “L” after model names represents high-top/low-top 785 

models. (Recall Table 1.) 786 

Figure 7: Histograms of the number of events having CI (circulation index, see Grotjahn 787 

[2011]) values on the event onset dates within 0.25 ranges for the three reanalyses and 788 

each model.  The interval(s) with the largest number of events in each dataset are shaded. 789 

A small triangle is placed on the abscissa to mark the average CI value at onset for each 790 

dataset. Information presented here is interpreted in concert with Table 3. Generally, the 791 

models have similar average CI values as the reanalyses. The distributions of four of the 792 

seven models in the rectangle of figure 6 (emphasizing projections prior to onset) have 793 

similar CI distributions at onset similar to the reanalyses. 794 

 795 

Figure S1: Grid points used for identifying heat wave events in each of the 14 models. 796 

Surface elevations: 300m, 700m, 1100m, and 1500m are contoured for selected models 797 

and high resolution California topography. 798 
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Table 1. Models and NCEP-NCAR reanalysis properties and heat wave events  799 

Model 
Horizontal resolution 

(lon. by lat.)a HT vs LTb CV Grid #c Min grid #d Avg. Duratione Eventsf 

NCEP-NCAR - - 15 6 4.07 28 

CCSM4 1:288x192 LT 4 2 3.75 32 

MRI-ESM1 2:320x160 HT 5 3 3.64 *33 

bcc-csm1-1-m 2:320x160 LT 5 3 4.16 31 

CNRM-CM5 3:256x128 LT 3 2 3.87 30 

HadGEM2-CC 4:192x144 HT 4 2 4.38 *34 

inmcm4 5:180x120 LT 2 1 4.64 *45 

NorESM1-M 6:144x96 LT 2 1 4.04 *50 

GFDL-CM3 7:144x90 HT 3 2 3.48 29 

GFDL-ESM2G 7:144x90 LT 3 2 4.14 29 

GFDL-ESM2M 7:144x90 LT 3 2 4.38 29 

bcc-csm1-1 8:128x64 LT 1 1 4.24 *33 

MIROC-ESM 8:128x64 HT 1 1 3.97 30 

MIROC-ESM-CHEM 8:128x64 HT 1 1 4.32 25 

FGOALS-g2 9:128x60 LT 1 1 4.16 *37 

Model Average 

  
  

4.08 33 
a grid size of data provided, b stratospheric representation with a high top (HT) or low top (LT) 800 
model, c number of grid points (or NCDC stations) associated with the CCV, d minimum number 801 
of grid points (stations) needed to exceed threshold for an event day, e average length of heat 802 
waves (each event must be ≥3 days), f number of events during 1977-2010 in NCEP-NCAR, 803 
1972-2005 in models (34 summers), * Number of events that differ from observed by more than 804 
±15%. 805 

 806 

  807 



29 
 

 808 

Table 2. Average projection coefficients between clusters; spread around and between cluster means 809 

 810 

Table 2: Average projection coefficients between clusters; spread around and between cluster means 

Cluster Avg. 
  C1 

centroida 
   C2 

centroid 
   Mixture 
centroid 

Mean event 
distance from 

cluster centroid 

Distance 
between 

two 
centroids Projection 

Coefficient onto      C1     C2           C1     C2          C1 
        
C2       C1       C2 

NCEP-NCAR 1.00 -0.19 -0.31 1.00 0.37 0.39 0.36 0.49 1.77 
ERA-Interim 1.15 -0.20 -0.09 1.27 0.58 0.54 0.48 0.59 1.92 
NCEP-DOE 1.20 -0.18 -0.11 1.17 0.70 0.50 0.44 0.56 1.88 
CCSM4 1.03 -0.18 -0.04 0.84 0.49 0.56 0.40 0.51 1.48 
MRI-ESM1 0.93 -0.09 -0.27 0.87 0.28 0.42 0.44 0.33 1.55 
bcc-csm1-1-m 1.16 0.04 -0.09 1.08 0.48 0.49 0.43 0.52 1.62 
CNRM-CM5 0.84 -0.29 -0.26 0.72 0.53 0.44 0.47 0.53 1.50 
HadGEM2-CC 1.05 -0.28 0.00 0.84 0.55 0.45 0.58 0.35 1.53 
inmcm4 0.90 -0.15 0.03 0.73 0.36 0.32 0.46 0.32 1.24 
NorESM1-M 0.72 -0.12 -0.17 0.71 0.33 0.27 0.33 0.41 1.21 
GFDL-CM3 0.80 0.20 0.07 0.89 0.37 0.41 0.49 0.46 1.00 
GFDL-ESM2G 0.98 -0.08 -0.15 0.93 0.51 0.44 0.37 0.52 1.51 
GFDL-ESM2M 1.10 -0.10 0.16 1.05 0.43 0.49 0.41 0.52 1.49 
bcc-csm1-1 0.88 -0.13 -0.38 0.80 0.49 0.39 0.49 0.42 1.57 
MIROC-ESM 0.77 -0.15 -0.07 0.78 0.32 0.25 0.42 0.41 1.25 
MIROC-ESM-
CHEM 0.93 -0.04 -0.06 0.78 0.58 0.51 0.54 0.39 1.28 
FGOALS-g2 0.61 -0.08 -0.18 0.55 0.36 0.36 0.23 0.23 1.01 
a ‘centroids’ = grey triangles in Figure 5 811 

 812 

 813 

 814 
 815 
 816 

  817 
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 818 

 819 

Table 3: Statistical properties of CI values at event onset (companion to Figure 7). 

Reanalysis 

Average 
value 

Value 
minus 
NNRA1 

# 
<0.9 

% 
<0.9 

First 
quartile 

Third 
quartile 

IQR Standard 
Deviation 

Skew 

NCEP-NCAR 1.14 0 2 7 1.04 1.28 0.23 0.24 -0.25 
ERA-Interim 1.20 0.06 2 8 1.03 1.45 0.42 0.27 -0.19 
NCEP-DOE 1.19 0.05 1 4 1.07 1.34 0.27 0.22 0.01 
Model         
CCSM4 1.36 0.22 2 6 1.14 1.63 0.48 0.31 0.00 
MRI-ESM1 1.32 0.18 2 6 1.15 1.55 0.40 0.32 -0.27 
bcc-csm1-1-m 1.24 0.10 4 13 0.95 1.53 0.58 0.33 -0.41 
CNRM-CM5 1.09 -0.05 9 30 0.89 1.26 0.38 0.26 -0.02 
HadGEM2-CC 1.14 0.0 8 24 0.99 1.32 0.33 0.30 -0.06 
inmcm4 0.99 -0.15 15 33 0.86 1.20 0.34 0.29 -0.39 
NorESM1-M 1.02 -0.13 16 32 0.85 1.24 0.39 0.30 -0.38 
GFDL-CM3 1.20 0.06 6 21 1 1.45 0.45 0.33 -0.11 
GFDL-ESM2G 1.27 0.13 4 14 1.03 1.44 0.41 0.31 0.06 
GFDL-ESM2M 1.22 0.08 6 21 0.91 1.50 0.59 0.35 -0.38 
bcc-csm1-1 1.16 0.02 7 21 0.96 1.38 0.41 0.33 -0.54 
MIROC-ESM 1.16 0.02 5 17 1.04 1.41 0.38 0.45 -1.28 
MIROC-ESM-
CHEM 

1.20 0.06 8 32 0.88 1.47 0.59 0.43 0.43 

FGOALS-g2 1.05 -0.09 11 30 0.85 1.26 0.41 0.29 -0.47 
 820 

 821 

 822 

  823 
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 825 

Figure 1: A map the CCV NCDC stations considered in this study. Shading indicates topographic 826 

elevation, with the scale indicated on the right edge of the plot. 827 



32 
 

 828 

Figure 2  Cluster composite means of three anomaly fields in NNRA1 data. These three combinations of 829 

variable, level, and time before onset are used to sort heat wave events of three reanalyses and 14 CMIP5 830 

simulations: U500 (-2day), T850 (-2day), T850 (-1day).  The domain enclosed by purple box (150W-831 

100W, 20N-60N) is used in a projection analysis. Contours are only using grid points having sign count 832 

fractions with magnitude over 1/3 of cluster member numbers. Contour intervals are 2 m/s and 1K. 833 

 834 

 835 



33 
 

 836 

 837 

 838 

 839 

 840 

Figure 3 Composite means of T850 for the events of cluster one. NCEP-NCAR Reanalysis is considered 841 
as a reference. Bottom row shows composites at event onset; middle row are composites one day before 842 
onset; top row is two days before onset. Only grid points having sign count fractions with magnitude over 843 
1/3 of the number of cluster members are colored (sign count fraction of -1/3 means two thirds of the 844 
members have the same negative sign; sign count fraction of 0.9 means that 95% of the cluster members 845 
have the same positive sign). In this cluster the strong warm temperature anomaly develops in the ‘key 846 
area’ off the N California coast only in the last day before event onset. 847 

  848 
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 850 

Figure 4 Same as Fig. 3 except for the events of cluster two. This cluster has a pre-existing strong warm 851 
temperature anomaly in SW Canada and NW US. 852 

 853 

 854 
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 855 

Figure 5 Scatterplots of the two cluster projection coefficients for each of the events in three reanalyses 856 

and 14 individual models. Projections are calculated with respect to the cluster means in the NNRA1 857 

(‘NCEP-NCAR’) data. A dot marks each event in cluster one, a circle marks each event in cluster two, 858 

and mixed events are marked with a '+' symbol. Mixed events lie within the parallel dashed lines, 859 

whereby the projection coefficients are too similar to distinguish the event as being one cluster type or the 860 

other. Each triangle represents the mean or ‘centroid’ of the projection coefficients in each cluster. Grey 861 

solid lines connect two triangles, which represents the distance between the two cluster mean locations. 862 

Dotted lines mark zero projection onto each cluster mean. Text labels indicate the fraction of all events in 863 

that dataset that are present in each of the three categories, ‘clust1’ refers to cluster one (e.g. figure 3); 864 

‘clust2’ refers to cluster two (e.g. figure 4); ‘mixed’ refers to mixed events. 865 

  866 
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 868 

Figure 6 Scatter plot of frequency ratio of cluster one and two versus and distance between cluster one 869 

and two. The center of each cluster is an average of projection coefficients for all events within a cluster 870 

(as shown in Figure 5). A multiplication symbol marks NNRA1 reanalysis (‘NCEP-NCAR’) data. 871 

Black/grey dots are for other reanalyses and models. Grey dots are drawn for models when their mixture 872 

cluster does not have the fewest members. Grey dashed rectangle is drawn centered on NCEP-NCAR. 873 

Models in that rectangle are the half of the models that separate the two clusters relatively clearly. Smaller 874 

(larger) number before model name represents higher (coarser) horizontal resolution while “H” or “L” 875 

after model names represents high-top/low-top models. (Recall Table 1.) 876 

  877 
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 879 

 880 

Figure 7: Histograms of the number of events having CI (circulation index, see Grotjahn [2011]) values 881 

on the event onset dates within 0.25 ranges for the three reanalyses and each model.  The interval(s) with 882 

the largest number of events in each dataset are shaded. A small triangle is placed on the abscissa to mark 883 

the average CI value at onset for each dataset. Information presented here is interpreted in concert with 884 

Table 3. Generally, the models have similar average CI values as the reanalyses. The distributions of four 885 

of the seven models in the rectangle of figure 6 (emphasizing projections prior to onset) have similar CI 886 

distributions at onset similar to the reanalyses. 887 
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Figure S1. Grid points used for identifying heat wave events in each of the 14 models. Surface elevations: 

300m, 700m, 1100m, and 1500m are contoured for selected models and high resolution California 

topography. 
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