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Abstract 24 

This study assesses how well the Community Climate System Model version 4 (CCSM4) 25 

simulates the large scale conditions needed for extreme hot surface temperatures in the California 26 

Central Valley (CV). Extreme hot summer days in the CV are associated with a large scale meteorological 27 

pattern (LSMP) described in Grotjahn and Faure (2008). The strength and sign of that pattern are 28 

assessed using a circulation index developed in Grotjahn (2011). The circulation index is strongly linked 29 

to daily maximum surface temperature normalized anomalies at stations spanning the CV. (Extreme 30 

heat events in the CV also affect a wider area of California and United States west coast.)  31 

This study makes two primary points. First, the approach used in Grotjahn (2011) can be applied 32 

as a novel tool to evaluate how skillfully a model simulates conditions present during CV hot spells by 33 

evaluating how well the LSMP is simulated.  The circulation index is calculated from historical 34 

simulations by CCSM4 and its distribution compared with that of the observed circulation index. Second, 35 

values of the CCSM4 based circulation index have smaller standard deviation than observed in reanalysis 36 

data. CCSM4 can generate a few comparably large circulation index values (implying high surface 37 

temperature anomalies) but not as often as in reanalysis data. Correct simulation of this large scale 38 

pattern is a necessary condition for successful simulation of California extreme hot days by a regional 39 

climate model. Also, the CCSM4 topography does not have a CV, but a broad topographic slope instead. 40 

Various choices of CCSM4 grid points were tested and none satisfactorily represented the CV maximum 41 

temperatures. These results should discourage use of CCSM4 surface data directly but encourage use of 42 

a regional climate model driven by the CCSM4 to capture hot spells in the CV. 43 

 44 
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1 Introduction  48 

How well does a global climate model reproduce the large scale meteorological pattern 49 

associated with extreme hot days of the California Central Valley (CV)? The CV is the most agriculturally 50 

productive region in the world and home to 5 million people, hence extreme heat is an important 51 

concern. Climate models have been used to estimate how maximum near surface temperatures are 52 

likely to change in the future (e.g. Meehl and Tebaldi, 2004) sometimes using indices (e.g. Sillman and 53 

Roeckner, 2008). However, this report will show that in the case of surface temperatures over California, 54 

using the global model’s surface temperatures directly is problematic in part because the model cannot 55 

resolve the complex topography of the region. Complex topography can be resolved by dynamically 56 

downscaling (e.g. Leung et al., 2004; Kanamitsu and Kanamaru, 2007; Zhao et al., 2011) with a high 57 

resolution regional climate model, or RCM. However, the ability of the RCM to simulate extreme events 58 

is limited in part by the large scale environment provided by the global model through the RCM 59 

boundary conditions.  Extreme hot spells in California are associated with highly significant, large 60 

amplitude, large scale meteorological patterns (LSMPs) in several variables (Grotjahn and Faure, 2008). 61 

These large scale patterns are highly correlated with the extreme hot spells (Grotjahn, 2011) and 62 

therefore the LSMP structure resolved by the global model can be a proxy for hot spells in California.  63 

This paper applies the scheme developed by Grotjahn (2011) as a tool to interrogate the output from 64 

and evaluate hot spells in a particular climate model. 65 

Synoptic patterns are included in some studies of heat waves. Cassou et al. (2005) associate two 66 

‘regimes’ of summer circulations associated with heat waves over Europe. Grotjahn and Faure (2008) 67 

discuss the large scale pattern in several variables and show how it evolves over a few days prior to 68 

onset of CV heat waves. Pezza et al. (2012) also look at the synoptic evolution over a few days prior to 69 

heat waves affecting southern Australia. Garcia-Herrera et al. (2010; their figure 4) show that within the 70 
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extraordinarily hot European summer of 2003, the most extreme event (early August) was characterized 71 

by a northeastward progression of anomalous heat over a shorter time scale. Stefanon et al. (2012) use 72 

a cluster analysis to identify six patterns of 500 hPa geopotential height over the European region 73 

associated with heat waves. In all cases the circulation has a mid-tropospheric ridge collocated with the 74 

region of extreme heat (an obvious association from hypsometric reasoning). The details of the larger 75 

pattern are more interesting, such as the breadth of the ridge, how the pattern evolves over time, and 76 

adjacent troughs; the latter can indicate a shift of the midlatitude storm track. Properties such as 77 

enhanced sinking (Black et al. 2004, Grotjahn 2011) contribute to amplified surface temperatures. 78 

Vautard et al. (2007) associate European heat waves with episodes of large scale southerly surface 79 

winds as do Vavrus and Van Dorn for Chicago high temperatures.  Grotjahn (2011) associates CV hot 80 

spells with an offshore flow that opposes cooling sea breezes. A few studies consider the large scale flow 81 

simulated by a global model during heat waves. Gershunov and Guirguis (2012) examine heat waves 82 

over California by comparing the ability of four climate models to simulate the large scale sea level 83 

pressure (SLP) over western North America and adjacent Pacific Ocean. 84 

The LSMPs focused on here are quite different from well-known low frequency patterns such as 85 

the North Atlantic Oscillation (NAO) and Madden-Julian Oscillation (MJO). These low frequency 86 

phenomena have some connection to heat waves (e.g. Black and Sutton 2007; Cassou 2008 both studies 87 

are for European heat waves). This study does not consider such low frequency phenomena. Such low 88 

frequency phenomena may create an environment or ‘envelope’ that may reinforce the short time scale 89 

LSMPs emphasized here. 90 

Soil moisture affects heat wave intensity (e.g. Zampieri et al., 2009). Koster et al. (2004) identify 91 

regions where soil moisture has high variability coupled to precipitation; in such regions the potential 92 

exists for drying of the soil by a preceding drought that can in turn, strongly amplify a heat wave (e.g. 93 
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Stefanon et al. 2012; and references therein) by reducing evaporation in the surface energy balance. The 94 

CV is not such a region because there is an annual drought occurring during most of the warm season 95 

and all of the summer months.  Interestingly, Stephanon et al. find that some of their heat wave clusters 96 

are not preceded by drought. 97 

The ability of the model surface temperatures to reproduce hot spells is highly limited by the 98 

coarse topography present in the model (which cannot capture the CV, note Figure 1). This topographic 99 

difference will be explored by using several combinations of points to represent the observed CV, no 100 

combination being fully successful. The wind pattern affecting the surface temperature is complex in the 101 

CV and those winds are quite different over the valley than over the adjacent western slope of the Sierra 102 

Nevada mountains. Over the CV some flows: are channeled and even organized by the topography into 103 

low level jets, have a significant meridional component, and have strong sinking nearly to the surface. 104 

Over the adjacent mountains the winds: are strongly upslope during the day within a ~1km thick 105 

boundary layer (with downslope above) and have a stronger diurnal variation. Such differences can be 106 

seen in Zhao et al. (2011) and since the low level patterns over Sierra slopes and CV are different, a bias 107 

is introduced by the model’s topography.  108 

Other factors influence the ability of the model to simulate hot spells. For example, the blocking 109 

ridge associated with the extreme heat may be influenced by remote, low frequency processes such as 110 

ENSO and MJO. The climate model considered has some skill in reproducing the MJO (Subramanian et 111 

al., 2011) and ENSO (Deser et al., 2011). However, the events emphasized here have a much shorter 112 

time scale.  113 

One might speculate about indirect impacts of biases. For example, a model having too little 114 

simulated cloud cover may develop clear skies even during weak subsidence and possibly have reduced 115 
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soil moisture (than observed) causing a feedback towards positive surface temperature bias. The model 116 

studied here tends to under estimate total cloud cover (mainly as low clouds) over the western US 117 

during JJA when compared with observational analyses: International Satellite Cloud Climatology Project 118 

(ISCCP) D2 and Warren et al. (1986) data (-15 to -30% model bias). However, all those datasets mix 119 

together mountainous regions with the CV. The CV has very little cloud cover during summer and the 120 

model has little cloud cover over most of the western US. Accordingly, 2m ‘surface’ temperatures over 121 

the CV compare well with the Legates and Willmott (1990) JJA climatology (model bias between -1K to 122 

+2K).  123 

 124 

2 Data and Procedures 125 

2.1 Data 126 

 Circulation indices (as defined in Grotjahn, 2011) are calculated for output from a global climate 127 

model simulation of historical climate and compared with corresponding observation-based reanalysis 128 

data. The circulation index uses upper air data, specifically temperature at 850 hPa (T850) and 129 

meridional wind component at 700 hPa (v700). These upper air data are from the NCEP/DOE AMIP-II 130 

(Kanamitsu et al., 2002) gridded reanalyses of daily data interpolated to 2.5 by 2.5 (latitude by 131 

longitude) resolution (hereafter NDRA2 data).  The global climate model was output by the Community 132 

Climate System Model version 4 (CCSM4) described in Gent et al. (2011). The CCSM4 data are from a 133 

historical simulation using 1.1 degree finite volume resolution; the upper air data are also interpolated 134 

to the same coarser grid.  As in Grotjahn (2011) all the upper air data are at 12 GMT, approximately 12 135 

hours before the maximum temperature is typically reached in the CV. The period is all June-September 136 

days during 1979-98. Daily maximum surface data (at 2 m above ground) are also used. Surface 137 
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observations were studied from 3 CV stations: Red Bluff (KRBL), Fresno (KFAT), and Bakersfield (KBFL). 138 

Daily maximum 2m temperature values from CCSM4 grid points were also used at full model resolution. 139 

2.2 Procedures 140 

 A brief summary of the calculation of the circulation index follows; the interested reader can 141 

find details of the procedures in Grotjahn (2011).  Anomalies are formed of all data by subtracting the 142 

corresponding long term daily mean values. For upper air data, the mean and anomaly are formed from 143 

the instantaneous data; long term daily means are calculated separately for time of day, day of the year, 144 

and each grid point. The daily maximum temperature surface data are further normalized by the 145 

corresponding standard deviation, the result is referred to as ‘maxTa’. The normalization makes the 146 

maxTa values of different stations (or model grid points) intercomparable and facilitates averaging 147 

station data with different variability. Such normalization is used by others, for example, Cattiaux et al. 148 

(2012). For each day an unnormalized projection of a portion of each upper air anomaly field onto the 149 

corresponding portion of each target ensemble anomaly field is calculated. In Grotjahn (2011) the 150 

circulation index defined as a 71% and 29% combination of the projections onto the T850 and v700 151 

ensemble mean fields, respectively worked best. The same ratio is used here. The target ensemble for a 152 

given field is the average of that field in NDRA2 data during the 1979-88 training period using the 16 153 

dates when the 3 CV stations have their highest combined maxTa values. This target ensemble is used 154 

for both NDRA2 and CCSM4 daily data because the portions of patterns used are similar to blocking 155 

ridges. A blocking index based on the simulation of such ridges is notably improved by removing the 156 

mean model bias first (Scaife et al., 2010; 500 hPa geopotential heights during winter). However, the 157 

grid points used in the projection are mainly off shore and located where the model bias is quite small; 158 

hence these summer CCSM4 biases are neglected when calculating the circulation indices shown. 159 

Circulation indices in the aggregate are compared between NDRA2 and CCSM4 data and with observed 160 
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surface maximum temperatures. Extreme value statistics and other tests are used to focus upon 161 

properties of the high tail of the distribution of temperature and circulation indices.  162 

 The normalized anomalies of CCSM4 surface daily maximum temperatures (maxTa-CCSM) are 163 

calculated to see what large scale upper air patterns in the model occur for high values of maxTa-CCSM. 164 

Various combinations of CCSM4 surface grid points are explored. 165 

 166 

3 Results 167 

3.1 Simulated maximum surface temperatures 168 

 The global model cannot resolve the CV making any use of the model’s surface temperatures as 169 

well as some lower atmosphere temperatures problematic. Though geographically important, Figure 1 170 

shows that the CV is not present with the approximate 1.1 degree model resolution. Where the CV 171 

should be, CCSM4 has a broad topographic slope. The CV station elevations (106m at KRBL; 101m at 172 

KFAT; 149m at KBFL) are much lower than the CCSM4 elevations at the corresponding locations; at the 3 173 

‘CCSM4-CV-locs’ locations in Figure 1, the elevations range from about 740m to 860m. The higher 174 

elevations make the model surface much closer to the elevations of the LSMPs used and thus the 175 

relation between surface and circulation index is artificially improved. The model’s topographic slope is 176 

also problematic since afternoon heating causes near-surface vertical motions to have opposite sign and 177 

reduced potential temperatures (e.g. figure 14a in Zhao et al., 2011) over the topographic slope of the 178 

Sierra Nevada mountains compared to the relatively flat CV. Grotjahn (2011) discusses how a low, strong 179 

subsidence inversion is associated with extreme hot days. Various lower elevation grid points were 180 

tested, indicated by numbers in Figure 1. The idea is that grid points away from the coast but over a 181 

similar range of elevation and latitude as the CV might behave more similarly to the temperatures 182 
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observed within the CV than would points on the broad topographic slope. But, even these-mock-CV 183 

grid points are not particularly similar to CV observations.  184 

Maximum temperature values at grid points are compared with CV observations. The median, 185 

standard deviation, and range of maximum temperature values from the averaged three CV station 186 

observations are 308.0K, 4.38C, and 25.0C, respectively. Daily maximum temperatures at grid point 0 in 187 

Figure 1 have too low of: median, standard deviation, and range (288.5K, 1.3C, 10.6C) as do values at 188 

grid point 4 (291.3K, 1.4C, 10.2C). In contrast, values at grid point 2 have the best median, standard 189 

deviation, and range (299.7K, 3.8C, 23.0C). Grid point 1 has the highest correlation with grid point 2 and 190 

third highest standard deviation and range (293.4K, 2.4C, 16.1C). While grid point 3 values have second 191 

highest correlation to grid point 2 values, the range is small (13.4C) and it was judged less representative 192 

of the CV latitude range than using either points 5 or 6 which are further south. Grid point 6 values are 193 

less correlated (0.57) with grid point 2 values than are grid point 5  values(0.72); grid point 5 values also 194 

have higher median, standard deviation, and range (295.6K, 3.0C, 19.4C). With this reasoning, grid 195 

points 1, 2, and 5 in the CCSM4 data were selected as roughly representative of the CV in the model. The 196 

average of values for these grid points will be used and referred to as the ‘CCSM4-mock-CV ’. 197 

Figure 2 shows three histograms of non-normalized temperatures averaged for various groups 198 

of points over the 2440 days of June-September, 1979-98. The observed values are the average of KRBL, 199 

KFAT, and KBFL daily maximum temperatures. The middle curve averages the surface maximum 200 

temperatures for 3 grid points close to the geographic locations of the 3 CV stations. The remaining 201 

curve averages the daily maximum temperatures for the CCSM4-mock-CV.  It is obvious that the CCSM4-202 

mock-CV values are systematically low in this region and time of year. The median and mean of the 203 

CCSM4-mock-CV are about 11-12C cooler than the observed values. The points further inland, roughly 204 

on the middle of CCSM4’s topographic slope do much better, only about 3C too cool. More intriguing 205 
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are the standard deviation, skew, and kurtosis. The observed CV stations have negative skew (-0.51; 206 

broader tail below the median than above the median). The CCSM4 values at grid points on the 207 

topographic slope (referred to as ‘CCSM4-CV-locs’ in Figure 1) also have negative skew (-0.47). However, 208 

the CCSM4-mock-CV values have positive skew (0.22). The kurtosis of the non-normalized data are: 209 

0.032, -0.069, -0.160 for the observed CV stations, CCSM4-CV-locs, and CCSM4-mock-CV averages, 210 

respectively. However, averaging non-normalized data can be misleading. The normalized anomaly 211 

averages used later (e.g. Figure 4) have skew (kurtosis) for the observed three stations, CCSM4-CV-locs, 212 

and CCSM4-mock-CV of: -0.31 (-0.25), -0.27 (0.61), 0.49 (0.05), respectively. So depending on whether 213 

normalized anomalies are used or not, the locations chosen have skew or kurtosis that are more or less 214 

similar to the observed, but generally the coastal stations of CCSM4-mock-CV perform less well than grid 215 

points on the topographic slope. The standard deviations for the 3 combinations compares similarly. CV 216 

observations, CCSM4 grid points on the slope, and CCSM4-mock-CV have standard deviations: 4.38C, 217 

4.70C, and 2.72C for non-normalized data and: 0.94, 0.70, and 0.81 for normalized anomaly averages. 218 

Why the grid points behave so differently on the topographic slope than on the narrow coastal plain is 219 

outside the scope of this study. It is speculated that the high elevations of the CCSM4 grid points on the 220 

topographic slope are more responsive to the mid troposphere than are the CCSM4-mock-CV points, as 221 

judged from scatter plots of these values against CCSM4 circulation index.  222 

 The robustness of the link between upper air fields and CCSM4-mock-CV extreme values is 223 

examined even though the CCSM4-mock-CV points have less association with the upper air pattern than 224 

using the CCSM4 grid points on the slope. Figure 3 compares the input NDRA2 fields used for the 225 

circulation indices against the corresponding average anomaly fields on the dates of highest 1% of 226 

maxTa-CCSM4 at the CCSM4-mock-CV grid points. The general patterns are similar but have three 227 

notable differences. First, the amplitude is considerably stronger in the NDRA2 input fields. Second, 228 
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while both patterns have a ridge over the west coast and troughs upstream and downstream, the zonal 229 

wavelength is shorter. Third, the peak anomaly values of T850 are centered onshore using the CCSM4-230 

mock-CV dates but offshore in observations. Grotjahn (2011) emphasizes that the location of T850 231 

anomaly offshore is crucial for creating a SLP gradient that suppresses a cooling sea breeze. 232 

3.2 Circulation index scatter plots 233 

 Each panel in Figure 4  compares a circulation index with a corresponding surface maximum 234 

temperature anomaly. Figure 4a uses data described in Grotjahn (2011): circulation index defined from 235 

NDRA2 data and observed maxTa averaged for the three CV stations, but only for 20 years (1979-98). 236 

While there are ‘busts’ in the sense that the observed stations can have a large positive anomaly when 237 

the circulation index does not (and vice versa) about half the extreme values (highest 1%) are also the 238 

highest 1% of the index values. The scatter using observations can be improved by altering the 239 

circulation index calculated in Grotjahn (2011) in several ways. A simple improvement is to include T850 240 

values at 0GMT for grid points over the CV in observations (not shown). Making that improvement to 241 

the CCSM4 circulation index narrows the scatter dramatically, especially on the high end; but such is not 242 

shown because the relationship is artificial since the grid point elevations are much closer (about half 243 

the distance) to the 850 hPa elevation than occurs in the CV; so the independence between circulation 244 

index component and maxTa-CCSM is greatly reduced. 245 

Figure 4b compares the circulation index calculated using the NDRA2 target anomaly fields 246 

projected onto the daily CCSM4 data (the ‘CCSM4 circulation index’) versus the maxTa-CCSM4 averaged 247 

for the 3 grid points near the three CV stations. While the relationship is not as good as in observations 248 

(Figure 4a) there is still a tendency for many of the extreme maxTa-CCSM4 values (on the broad 249 

topographic slope) to be coincident with extreme circulation index values. The relationship is noticeably 250 
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reduced (i.e. the scatter is broader) when the CCSM4 circulation index is matched against the maxTa 251 

from the CCSM4-mock-CV grid points (Figure 4c).  252 

An appropriate measure of the scatter for points above a threshold is the non-parametric 253 

Kendall tau rank correlation coefficient (τ). Values were calculated following Wessa (2012). For the 385 254 

values above 1.0 of 3-station CV surface data, τ=0.33. For the 312 values above 0.7 of CCSM4 surface 255 

data at grid points near the CV stations, τ=0.15. For the 368 values above 0.8 of CCSM4-mock-CV surface 256 

data, τ=0.10.  257 

3.3 Circulation indices distributions  258 

 The distributions of the observed maxTa and the NDRA2 and CCSM4 circulation indices on all 259 

2440 days are shown in Figure 5a. While the data at individual grid points and individual CV stations 260 

have been normalized, daily averages formed from such data do not necessarily have standard deviation 261 

of 1.0. Also, the intent of the circulation index is to capture properties of the high tail, discussed more 262 

fully in connection with Figure 5b. Nonetheless, the observed circulation index (dashed line with 263 

diamonds) has similar standard deviation, skew, and other properties as the observed surface maxTa for 264 

the three CV stations (solid line with squares). The circulation index performs well for the low tail as well 265 

as the high because unusually cool days for the CV are associated with a trough centered near the coast 266 

which creates an opposite sign circulation index relative to unusually hot days. Hence, the circulation 267 

index captures the whole range of surface variation (further discussion in Grotjahn, 2011). The standard 268 

deviations for maxTa and NDRA2 circulation index match well (0.94, 0.91); the skew is negative for the 269 

maxTa surface values (-0.26) but near zero for the NDRA2 circulation index (0.02). Somewhat in 270 

contrast, the CCSM4 circulation index distribution (dotted line with triangles) has much smaller standard 271 

deviation (0.75) and positive skew (0.15). The main implication from Figure 5a is that the CCSM4 272 
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historical simulation does not have as much variability in the circulation index as found in the reanalysis 273 

data. 274 

 The smaller standard deviation in the CCSM4 circulation indices results in CCSM4 counts in bins 275 

between 1.0 and 2.0 being roughly 2/3 the counts for the NDRA2 indices. The extreme high end of the 276 

distribution of the circulation index is emphasized in Figure 5b. The circulation index is intended to 277 

capture the top 1% of the events. So, using a cutoff corresponding to the top 1% of the NDRA2 278 

circulation indices (24 dates) results in about half as many (9 occurrences) of the CCSM4 indices. While 279 

there are fewer of the CCSM4 indices on the high end of the tail, it is noteworthy that the CCSM4 does 280 

produce as large of values of the circulation index as occurred in the NDRA2 data. 281 

 Generalized Pareto distribution (GPD) fits were made to the high tail of the two sets of 282 

circulation indices. The purpose in using this well established tool is to have a quantitative means to 283 

compare the high tail of the distribution of maximum temperature and circulation indices in the model 284 

versus observations. Two tests were made to identify a reasonable threshold for the fit. Mean residual 285 

life plots of the maxTa, NDRA2, and CCSM4 circulation indices were ‘linear’ in different ranges but those 286 

ranges overlap from about 0.5 to 1.4 for the three distributions. Testing GPD properties for different 287 

thresholds finds consistent estimates of scale and shape parameters between 0.5 to about 1.1 for all 288 

three distributions. On these bases, GPD fits used 1.0 as the threshold. The shape, scale, and 100 year 289 

return estimates based on these GPD fits are given in Table 1. The scale parameter is inversely related to 290 

the amplitude. The shape parameter is an indicator of how long the tail is and Table 1 is consistent with 291 

comments made above about Figure 5. Negative values of the shape parameter tend to ‘straighten out’ 292 

the distribution resulting in a ‘zero crossing’ (which implies an upper bound to the circulation index); the 293 

longer tail of the CCSM4 index shows up as the smaller (though still negative) magnitude of the shape 294 

parameter. These results show that the general properties of the distribution discussed above (smaller 295 
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standard deviation coupled with a long tail in the CCSM4 circulation indices) are less prominent at the 296 

high tail. Though the tails of the distributions shown in Figure 5 visually look different and despite 297 

notable differences in standard deviation, skew, and kurtosis, the longer tail in the CCSM4 indices makes 298 

the 100 year return period value quite similar in the distributions of the two circulation indices. 299 

However, in short, the CCSM4 tends to have too few of the larger circulation indices. 300 

 Heat waves definitions (see Grotjahn, 2011) often include a minimum duration of consecutive 301 

extremely hot days. Figure 6 organizes the dates above the 1.0 threshold used for the GPD fits into bins 302 

based on the number of consecutive days above that threshold. The longest duration is 15 days which 303 

occurred once each for the surface maxTa observations and for the CCSM4 circulation index. The longest 304 

duration (10 days) for the NDRA2 data occurred twice. Obviously, longer durations are less common 305 

than shorter durations above the threshold. The decrease in the number of events as duration increases 306 

looks similar for all three distributions. 307 

There is no single theoretical statistical distribution for the durations above a threshold. 308 

However, the geometric distribution (i.e., the discrete analog of the exponential distribution) is 309 

appropriate (Katz, personal communication). The key parameter for a geometric distribution fit to 310 

durations above a threshold (Furrer et al, 2010) is (the inverse of) the average duration length. The 311 

average duration lengths for the three circulation indices are included on figure 6. The average durations 312 

compare favorably even though the same threshold is used for the station data (maximum surface 313 

temperature anomaly) as for the gridded data (upper air circulation indices). Also, while the CCSM4 data 314 

have fewer exceedances of the threshold than the reanalysis data, the average duration is remarkably 315 

similar for these two gridded datasets. 316 

 317 
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4 Conclusions  318 

 This project considers how well extreme hot spells over the Central Valley (CV) of California are 319 

simulated by the CCSM4 global climate model.  320 

The model cannot resolve the CV but instead has a broad topographic slope where the low-lying 321 

and nearly flat CV should be located. Several choices of surface grid points were considered in an effort 322 

to capture the maximum temperature behavior observed in the CV. CCSM4 grid points located near the 323 

CV stations were found to have a distribution of daily maximum temperature that is a few degrees too 324 

cool, but otherwise the distribution agrees well in standard deviation and skew with the observed daily 325 

maximum temperatures (Figure 2). One concern with choosing these model points to represent the CV 326 

is that the behavior of winds and thermodynamic properties will likely be quite different for a 327 

topographic slope open to the Pacific Ocean than for a CV largely ringed by mountains. Significant 328 

differences between the near-surface properties over the CV and the western slope of the Sierra Nevada 329 

mountains have been found in observations and model studies (e.g. Zhao et al., 2011). In addition, the 330 

high altitude of these model grid points artificially boosts the link between surface values and lower 331 

tropospheric variables (e.g. at the 850 hPa level).  Attempts to use lower elevation model grid points 332 

inland from the coast of California proved to be disappointing. The best lower elevation grid points were 333 

much cooler, had notably smaller standard deviation, and opposite sign for skew, compared to CV 334 

observations. Though they are mediocre choices for representing the CV with CCSM4, the highest 1% of 335 

the surface maximum temperature anomalies at these points defined the days used to construct 336 

ensemble means of temperature at 850 hPa and meridional wind at 700 hPa; these CCSM4 ensemble 337 

means were similar to those based on CV observations and reanalysis data. It was judged that the 338 

CCSM4 develops a generally similar pattern because the thermal maximum and accompanying ridge are 339 

consistent with simple thermodynamic arguments.  The primary differences in the ensemble means 340 
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(Figure 3) based on observed versus coastal CCSM4 grid points are that the CCSM4 ensemble mean had 341 

weaker amplitude, smaller zonal scale, and the maximum thermal anomaly was onshore instead of 342 

offshore.  The location offshore of the 850 hPa level thermal anomaly is an important detail for extreme 343 

heat in the CV (see Grotjahn, 2011). The weaker CCSM4 LSMP amplitude is consistent with calculations 344 

that found fewer larger values of the CCSM4 circulation indices. 345 

An earlier study (Grotjahn, 2011) used a projection of key parts of the ensemble mean fields 346 

upon corresponding daily weather maps to calculate a circulation index. The circulation index is 347 

intended to measure how strongly a given day resembles a day of observed extremely hot maximum 348 

temperature anomaly in the CV. This study applies that projection upon daily data from CCSM4 349 

historical simulations. The CCSM4 circulation index has notably smaller variation and different tail 350 

properties compared with the observed (NCEP/DOE AMIP-II reanalysis) data (Figure 5). For the extreme 351 

positive values of the index (associated with the hottest days) CCSM4 can create large values, but they 352 

don’t occur often enough (generally only two thirds as often). The large scale pattern for cool days has 353 

locally the opposite anomaly pattern, hence the circulation index matches well the cool anomaly 354 

maximum temperatures even though that was not an intended use. The CCSM4 is less adept at 355 

generating the negative extreme values of the circulation index associated with unusually cool 356 

anomalies than at generating positive extreme index values. While CCSM4 generates fewer positive 357 

extremes above a threshold of one standard deviation than are found in observations, those in the 358 

model occur for varying durations that do match well the observed durations (Figure 6).  359 

This study does not assess how general such climate model errors are, though a few other 360 

studies do consider aspects of the larger meteorological pattern. A general impression is that 361 

atmosphere-ocean general circulation models do a fairly good job in simulating the statistics of extreme 362 

temperature events (Randall et al., 2007; and references therein). For example, Kharin et al. (2005) 363 
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compare maximum temperature extremes for a dozen models with various reanalyses, including an 364 

earlier version of the NCAR model (the latter simulates the statistics well). If that simulation skill 365 

presumes adequate simulation of the associated LSMPs, then this work would rightly place emphasis 366 

upon the topography and other phenomena not resolved by the global model. Meehl and Tebaldi (2004) 367 

find similar 500 hPa geopoential height patterns from a global model (the PCM) ensemble mean during 368 

the worst 3-day (nighttime minimum temperature) during 1961-90, and from observations during a 369 

severe heat wave near Chicago, USA. Vavrus and Van Dorn (2010) compare SLP patterns from two 370 

models and observations for the hottest 95th percentile days at Chicago. Simulations and observations 371 

find strong southerly advection towards Chicago with a strong 500 hPa ridge aloft. Gershunov and 372 

Guirguis (2012) compare the ability of four combinations of global and regional climate models to 373 

simulate the large scale SLP over western North America and adjacent Pacific Ocean during heat waves.  374 

They emphasize a particular model, but even that model has a tendency for weaker and fewer heat 375 

waves (using a 95th percentile threshold). Diffenbaugh and Ashfaq (2010) compare observations with 376 

regional climate model simulations forced by boundary conditions from CCSM3 (1951-1999) finding a 377 

similar pattern for the hottest summer, though the model had less variance than observed over the 378 

western US. Ashfaq et al. (2010) compare 95th percentile temperature thresholds from two models 379 

(using a regional model) over the continental United States. They use a regional model driven by a NASA 380 

global model and find the patterns compared well with NARR (North American Regional Reanalysis) 381 

values.  Mastrandrea et al. (2011) compare some surface-based extreme indices over California in 382 

observations and 6 global climate models (GCMs) downscaled two ways; since the downscaling includes 383 

bias correction, analogs, and model averaging, it is unclear how well the individual GCMs perform, 384 

though the downscaled results for mean heat wave duration compare favorably with observations 385 

Finally, some studies focus on a much longer time scale than considered here. Seasonal hot spells do not 386 

consider the LSMPs emphasized here but instead lead to associations with low frequency phenomena 387 
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like NAO, ENSO, or MJO. For example, Trenberth and Fasullo (2012) discuss several extreme events of 388 

2010, comment on the models ability to simulate possibly-related remote phenomena, and employ 389 

CCSM4 in their analysis. Interested readers are directed to that paper and its references for further 390 

discussion of links to low frequency phenomena. 391 

 392 

The importance of the circulation index goes beyond being a proxy for extreme hot values in a 393 

CV that is not present in the model. These results show that no combination of global model (CCSM4) 394 

grid points adequately describes the CV surface temperatures or their association with the upper air 395 

LSMP associated with CV hot spells. So, a regional climate model (RCM) with sufficient topographic 396 

resolution to have a CV is needed but the RCM needs the right large scale circulation pattern (as 397 

boundary conditions) to have a chance of generating extreme CV surface temperature anomalies (hot or 398 

cool). An RCM is not likely to overcome boundary conditions from a global model that lack the right 399 

large scale circulation patterns. CCSM4 can generate strong enough large scale patterns for CV hot spells 400 

and the patterns can last as long as observed thereby encouraging RCM simulations of extreme heat in 401 

the CV, but the caution is that CCSM4 does not create the patterns as often as does the atmosphere. 402 

403 
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Figure Captions. 507 

 508 

Fig. 1 Surface elevations for a) CCSM4 model and b) actual topography are shown (in meters, starting at 509 

20m, using 60m interval).  a) Grid point locations of CCSM4 model data discussed in the text. Geographic 510 

locations of California Central Valley (CV) stations used by Grotjahn (2011) in defining the downscaling 511 

scheme for extreme hottest days: R (Red Bluff, KRBL), F (Fresno, KFAT), and B (Bakersfield, KBFL). The 512 

model grid points used to represent R, F, and B are indicated by ‘+’ symbols . The CV seen in b) is not 513 

resolved by the model and the model has notably higher topography at the actual location of the CV. 514 

Two grid point combinations: i) numbered 1, 2, and 5 and ii) indicated by + symbols were used (see text) 515 

as approximations to R, F, and B. The former are identified as the ‘CCSM-mock-CV points while the latter 516 

are ‘CCSM4-CV-locs’ points. Shaded area in a) indicates region above 20m elevation that should be 517 

ocean. (The model defines grid points  at and near the ocean with both land and ocean fractions.) The 518 

actual topography has far steeper slope for the various mountain ranges in the region. Hence, contours 519 

range from 20-1640m in a) and 20-3620m in b). 520 

 521 

Fig. 2 Daily surface (2 m elevation above ground) maximum temperature comparison histograms; bins 522 

are 1.59C wide. ‘Observed’ values (shorter dashed line) are the average values from the three stations 523 

(R, F, B) in Fig. 1. ‘CCSM4-CV-locs’ are daily maximum 2 m temperatures (solid line) at three CCSM4 grid 524 

points (‘+’ symbols in Fig. 1a) close to the locations of R, F, and B. CCSM4-CV-locs values are generally 525 

similar (in values, standard deviation, and skew) to the observations (but ~3C too cool). ‘CCSM4-mock-526 

CV’ values are averages of 2 m daily maximums at grid points 1, 2, and 5 on the coastal plain; those 527 

values (dotted curve) are much too cool, have too small standard deviation, and have wrong sign of 528 
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skew. The averaged distribution of observations located near model grid points 2 and 5 (Sonoma and 529 

King City respectively) are shown with a long dashed line. 530 

 531 

Fig. 3 Comparison of observed and simulated ensemble means for dates of extreme hot surface 532 

temperatures. a) 850 hPa temperature anomaly ensemble mean reanalysis data during dates of the top 533 

1% of normalized anomaly surface (2 m) daily maximum temperatures observed in the California Central 534 

Valley from 1979-1988. b) 700 hPa meridional wind component anomaly ensemble mean reanalysis data 535 

during the same dates used in panel a).  The fields in a) and b) are the same as those used by Grotjahn 536 

(2011) to calculate the daily circulation index. c) Corresponding to (a) but using CCSM4 data during dates 537 

of the top 1% of normalized anomaly surface maximum temperatures at grid points 1, 2, and 5 (see Fig. 538 

1) on the coastal plain. d) Corresponding to (b) but also using CCSM4 data at points 1, 2, and 5. The two 539 

temperature patterns appear to be generally similar but weaker in CCSM4 data: a positive anomaly near 540 

and over the CV with negative extrema upstream and downstream. However, the strong temperature 541 

anomaly is centered at or just off the west coast in the observation-based reanalysis (a), but in the 542 

CCSM4 data (c) the maximum is located onshore generally where the topographic slope is large in Figure 543 

1. Centering the positive anomaly offshore amplifies surface heating inland by creating a near surface 544 

pressure pattern opposing a local sea breeze. It is unclear if the same mechanism can operate in CCSM4. 545 

Another difference is the upstream negative anomaly is further east than in reanalyses.  The meridional 546 

wind patterns (b) and (d) have similar comparison. 547 

 548 

Fig. 4 Scatterplots of positive values of the circulation index (see Grotjahn, 2011) versus near surface 549 

(2m) normalized daily maximum temperature anomaly. a) NDRA2 based circulation index and observed 550 
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CV data. b) and c) compare CCSM4 circulation index (projecting CCSM4 daily data onto parts of Fig. 3a,b) 551 

against CCSM4-CV-locs and CCSM4-mock-CV values, respectively. Ordinates are: a) observed normalized 552 

anomaly mean daily maximum temperature of three stations (R, F, B; see Fig. 1) spanning the CV; b) 553 

corresponding normalized anomaly mean daily maximum 2m temperatures at CCSM4-CV-locs grid 554 

points whose longitudes and latitudes lie within the actual CV and near R, F, and B; c) corresponding 555 

values for 3 CCSM4 grid points (1, 2, and 5) that are on the coastal plain. Generally, the stronger the 556 

circulation index the hotter the surface maximum tends to be (a). The strong link between circulation 557 

index and surface maximum temperatures seen in observations and reanalyses (a) is not as strong for 558 

the CCSM4. 559 

 560 

Fig. 5 a) Full range histograms of normalized maximum surface temperature anomaly data and two 561 

circulation indices. ‘3-stn. Obs’ are averages of the observed normalized anomaly data at R, F, and B. 562 

‘NDRA2’ are circulation index values calculated from the NCEP/DOE AMIP-II reanalysis data, while 563 

‘CCSM4’ uses the same procedure but projecting CCSM4 daily data onto the reanalysis ensemble mean 564 

to calculate CCSM4 based circulation index values. NDRA2 values have a similar distribution as surface 565 

observations, even for negative values. CCSM4 values should be directly compared with NDRA2 values. 566 

CCSM4 values have too little variation and positive skew. b) Histogram bar chart of the high tail of the 567 

distribution seen in (a). The top 1% of NDRA2 (solid bars) are those in the columns  with circulation 568 

index 2.0 and higher. CCSM4 data are cross hatched columns. The NDRA2 data have more of the largest 569 

circulation index values than do the CCSM4 data (24 versus 9 above 2.0). However, comparable peak 570 

values do occur in the CCSM4 data. 571 

 572 
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Fig. 6 Duration (in days) above threshold 1.0 for the reanalysis data based circulation index (‘NDRA2’), 573 

the CCSM4 based circulation index (‘CCSM4’) and for the observed average normalized maximum 574 

temperature anomalies at R, F, and B (‘3-stn Obs). The duration periods above this threshold are similar 575 

for both circulation indices and for the observed surface maximum temperature (3-stn Obs).  576 

577 
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 578 

 579 

Table 1 GPD fits of the data using 1.0 threshold 580 

 Observed maxTa 
average of 3 CV stations 

(385 values) 

NDRA2 analysis data 
circulation index  

(313 values) 

CCSM4 historical 
simulation circulation 
index (239 values) 

Scale parameter 0.49 (+/- 0.03) 0.59 (+/- 0.04) 0.39 (+/- 0.03) 

Shape parameter -0.30 (+/- 0.03) -0.29 (+/- 0.04) -0.10 (+/- 0.06) 

100 year return period 
value (95% confidence 
range: low, high) 

2.48 (2.41, 2.65) 2.80 (2.69, 3.08) 2.96 (2.63, 3.5) 

581 
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 582 

Figures 583 

 584 

 585 

 586 

Fig. 1 Surface elevations for a) CCSM4 model and b) actual topography are shown (in meters, starting at 587 
20m, using 60m interval).  a) Grid point locations of CCSM4 model data discussed in the text. Geographic 588 
locations of California Central Valley (CV) stations used by Grotjahn (2011) in defining the downscaling 589 
scheme for extreme hottest days: R (Red Bluff, KRBL), F (Fresno, KFAT), and B (Bakersfield, KBFL). The 590 
model grid points used to represent R, F, and B are indicated by ‘+’ symbols . The CV seen in b) is not 591 
resolved by the model and the model has notably higher topography at the actual location of the CV. 592 
Two grid point combinations: i) numbered 1, 2, and 5 and ii) indicated by + symbols were used (see text) 593 
as approximations to R, F, and B. The former are identified as the ‘CCSM-mock-CV points while the latter 594 
are ‘CCSM4-locs’ points. Shaded area in a) indicates region above 20m elevation that should be ocean. 595 
(The model defines grid points  at and near the ocean with both land and ocean fractions.) The actual 596 
topography has far steeper slope for the various mountain ranges in the region. Hence, contours range 597 
from 20-1640m in a) and 20-3620m in b). 598 

599 
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 600 

 601 

 602 

 603 

Fig. 2 Daily surface (2 m elevation above ground) maximum temperature comparison histograms; bins 604 
are 1.59C wide. ‘Observed’ values (shorter dashed line) are the average values from the three stations 605 
(R, F, B) in Fig. 1. ‘CCSM4-CV-locs’ are daily maximum 2 m temperatures (solid line) at three CCSM4 grid 606 
points (‘+’ symbols in Fig. 1a) close to the locations of R, F, and B. CCSM4-CV-locs values are generally 607 
similar (in values, standard deviation, and skew) to the observations (but ~3C too cool). ‘CCSM4-mock-608 
CV’ values are averages of 2 m daily maximums at grid points 1, 2, and 5 on the coastal plain; those 609 
values (dotted curve) are much too cool, have too small standard deviation, and have wrong sign of 610 
skew. The averaged distribution of observations located near model grid points 2 and 5 (Sonoma and 611 
King City respectively) are shown with a long dashed line.612 
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 613 

 614 

 615 

Fig. 3 Comparison of observed and simulated ensemble means for dates of extreme hot surface 616 
temperatures. a) 850 hPa temperature anomaly ensemble mean reanalysis data during dates of the top 617 
1% of normalized anomaly surface (2 m) daily maximum temperatures observed in the California Central 618 
Valley from 1979-1988. b) 700 hPa meridional wind component anomaly ensemble mean reanalysis data 619 
during the same dates used in panel a).  The fields in a) and b) are the same as those used by Grotjahn 620 
(2011) to calculate the daily circulation index. c) Corresponding to (a) but using CCSM4 data during dates 621 
of the top 1% of normalized anomaly surface maximum temperatures at grid points 1, 2, and 5 (see Fig. 622 
1) on the coastal plain. d) Corresponding to (b) but also using CCSM4 data at points 1, 2, and 5. The two 623 
temperature patterns appear to be generally similar but weaker in CCSM4 data: a positive anomaly near 624 
and over the CV with negative extrema upstream and downstream. However, the strong temperature 625 
anomaly is centered at or just off the west coast in the observation-based reanalysis (a), but in the 626 
CCSM4 data (c) the maximum is located onshore generally where the topographic slope is large in Figure 627 
1. Centering the positive anomaly offshore amplifies surface heating inland by creating a near surface 628 
pressure pattern opposing a local sea breeze. It is unclear if the same mechanism can operate in CCSM4. 629 
Another difference is the upstream negative anomaly is further east than in reanalyses.  The meridional 630 
wind patterns (b) and (d) have similar comparison.631 
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 633 

 634 

 635 

 636 

 637 

 638 

Fig. 4 Scatterplots of positive values of the circulation index (see Grotjahn, 2011) versus near surface 639 
(2m) normalized daily maximum temperature anomaly. a) NDRA2 based circulation index and observed 640 
CV data. b) and c) compare CCSM4 circulation index (projecting CCSM4 daily data onto parts of Fig. 3a,b) 641 
against CCSM4-CV-locs and CCSM4-mock-CV values, respectively. Ordinates are: a) observed normalized 642 
anomaly mean daily maximum temperature of three stations (R, F, B; see Fig. 1) spanning the CV; b) 643 
corresponding normalized anomaly mean daily maximum 2m temperatures at CCSM4-CV-locs grid 644 
points whose longitudes and latitudes lie within the actual CV and near R, F, and B; c) corresponding 645 
values for 3 CCSM4 grid points (1, 2, and 5) that are on the coastal plain. Generally, the stronger the 646 
circulation index the hotter the surface maximum tends to be (a). The strong link between circulation 647 
index and surface maximum temperatures seen in observations and reanalyses (a) is not as strong for 648 
the CCSM4.  649 

 650 

 651 

652 
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 653 

 654 

 655 

 656 

 657 

Fig. 5 a) Full range histograms of normalized maximum surface temperature anomaly data and two 658 
circulation indices. ‘3-stn. Obs’ are averages of the observed normalized anomaly data at R, F, and B. 659 
‘NDRA2’ are circulation index values calculated from the NCEP/DOE AMIP-II reanalysis data, while 660 
‘CCSM4’ uses the same procedure but projecting CCSM4 daily data onto the reanalysis ensemble mean 661 
to calculate CCSM4 based circulation index values. NDRA2 values have a similar distribution as surface 662 
observations, even for negative values. CCSM4 values should be directly compared with NDRA2 values. 663 
CCSM4 values have too little variation and positive skew. b) Histogram bar chart of the high tail of the 664 
distribution seen in (a). The top 1% of NDRA2 (solid bars) are those in the columns  with circulation 665 
index 2.0 and higher. CCSM4 data are cross hatched columns. The NDRA2 data have more of the largest 666 
circulation index values than do the CCSM4 data (24 versus 9 above 2.0). However, comparable peak 667 
values do occur in the CCSM4 data. 668 

669 
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 670 

 671 

 672 

 673 

Fig. 6 Duration (in days) above threshold 1.0 for the reanalysis data based circulation index (‘NDRA2’), 674 
the CCSM4 based circulation index (‘CCSM4’) and for the observed average normalized maximum 675 
temperature anomalies at R, F, and B (‘3-stn Obs). While the number of number of events above the 676 
threshold varies, the duration periods above this threshold are similar (as measured by average 677 
duration) for both circulation indices and for the observed surface maximum temperature (3-stn Obs).  678 
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