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Abstract

A technique is described to construct persistent, three-dimensionally localized features. Localized
is used here to signify a structure that is nonzero only in a small region of a larger domain. These
features remain nearly coherent and stable in a linear calculation by constructing the local feature
from neutral eigenmodes (sometimes called “continuum modes”). The limiting factors are how
much the phase speed varies between the modal constituents of the localized feature and how
good the match is between eigenvalue and initial-value versions of the governing equations. The
governing equations used here are the quasi-geostrophic (QG) potential vorticity (PV) tendency
equation. The linear form of the model specifies a zonal mean flow that can have both vertical and
meridional shear. The prescribed, mean state has no variation along the flow. The construction of
a localized state can be accomplished using fewer modes when meridional shear is present in the
zonal mean flow.

The localized features are tested as initial conditions (ICs) in linear calculations and then applied
to study a problem innonlinear extratropical cyclogenesis. The nonlinear simulations are not ex-
haustive. The scope is limited to considering whether nonlinear advection favors nonmodal growth
(NG) or normal mode baroclinic instability (NMBI). The applications use several mean flows and IC
amplitudes and structures representing conditions prior to observed cyclogenesis. Even though the
scope of the application is limited, that scope is better served by using structures that approximate
observed traveling, but not developing, localized troughs. The localization includes a procedure that
removes linearly unstable normal modes from the IC. Removing the unstable normal modes allows
tracking of how quickly growing structures are created by nonlinear advection. Results for selected
ICs and basic flows find little NG. Adjacent to the original trough, unstable normal mode-like
structures appear soon into the integration. Their properties are more consistent with normal mode
growth than NG. Projecting the solution onto eigenmodes finds strong initial amplification of un-
stable normal modes by the nonlinear terms. The eddies in nonlinear integrations evolve towards a
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horizontal size that is greater than the linearly most unstable normal mode. Larger initial amplitude
leads to faster breakdown of the localization. Emphasis is on ICs with mid or upper tropospheric
isolated troughs and sufficient amplitude such that the sum of the IC and mean flow is either an
“open wave” or a “closed contour”. The ICs considered develop a leading upper high and trailing
lower high and the IC trough develops upstream tilt; both developments are similar to observed
cyclogenesis.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Baroclinic instability; Nonlinear instability; Quasi-geostrophic model; Localized structures;
Cyclogenesis

1. Introduction and motivation

Observed frontal cyclones form and develop in a complex flow that includes other troughs
and ridges of varying size, location, and intensity. Our understanding of the development
of frontal cyclones is shaped by conceptual and mathematical models. An example of the
former is “type B cyclogenesis” (Petterssen and Smebye, 1971) wherein an upper level
trough approaches a lower level area of warm advection. When a favorable position is
reached that supports growth, the upper and lower features reinforce each other (Hoskins
et al., 1985). Most synopticians likely view the interaction between the upper and the
lower features to be somewhat localized in space. While the larger environment shapes
the properties of the upper and lower trough, each trough does not appear to be one of
a long wavetrain of troughs and ridges. In contrast, popular mathematical models (e.g.
Charney, 1947; Eady, 1949) for normal mode baroclinic instability (NMBI) tend to examine
wavetrains. Similarly, studies (e.g.Farrell, 1984; Grotjahn et al., 1995) of nonmodal growth
(NG) develop or start with wavetrain solutions. The primary goal of this study is to describe
a procedure by which structures that are nearly stable in a linear sense can be defined that
are localized in space. The secondary goal is to demonstrate their use in an application
to extratropical cyclogenesis. The principal goal of the application is to assess the relative
strengths of NMBI and NG when these stable, localized structures are placed in a nonlinear
model. Allowing advective nonlinearity causes the localization to break down. However,
the construction of the localized initial condition (IC) creates an experimental situation in
which neither NMBI nor NG are favored in a linear sense, so NMBI and NG that may occur
are those that advective nonlinear terms favor.

Nonlocalized states are common in theoretical studies due to their mathematical simplic-
ity. The archetype nonlocalized state is a single wavenumber in the along−flow direction.
In initial-value studies such asGrotjahn and Tribbia (1995)the lack of localized initial
structure leads to rather ambiguous initial conditions. An upper level trough appears to be
upstream of one surface low but it is also downstream of an adjacent low due to the use of a
single zonal wavenumber in a periodic domain. The procedure described here can remove
that ambiguity.

Several studies have examined somewhat localized solutions. One way to create some-
what localized solutions is to introduce zonal variation into the model. That might be done
by means of a boundary forcing (e.g. zonally-varying topography as inGrotjahn and Wang,
1990). More commonly, somewhat localized solutions occur in studies of prescribed flows
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that have downstream variation such as climatological mean flows (e.g.Frederiksen, 1983).
In these studies, the eigensolutions tend to consist of a chain of highs and lows modulated
by an amplitude envelope. Another method by which NMBI can be simulated with localized
solutions is through the use of solitary wave disturbances (e.g.Mitsudera, 1994). Mitsudera
set up two solitary waves: when they resonantly interact, a transition occurs to an unstable
structure somewhat resembling a normal mode. Lastly, a strongly nonlinear, isolated vortex
has been used to simulate a Gulf Stream ring and hurricane dynamics (e.g.McWilliams
and Flierl, 1979; Shapiro and Ooyama, 1990). For example,McWilliams and Flierl (1979)
examine ICs with a Gaussian horizontal structure and a two-mode vertical structure in a
nonlinear quasi-geostrophic (QG) model. The vertical structure of their IC consists of the
barotropic and first baroclinic neutral normal modes. This IC tends to persist with little
change in form, however, even in the absence of friction this solution eventually decays
through Rossby wave dispersion.

An initial condition consisting of an arbitrarily defined localized structure, will typically
develop a spreading packet of waves during an integration forward in time. Some members
of the initial packet may be unstable normal modes of a corresponding linear problem. The
spread may be in several directions or primarily in one direction such as upstream as seen
in Thorncroft and Hoskins (1990, their Fig. 19). The result may be largely diagnosed by
projecting the initial state upon the eigenmodes to see which are present and with what am-
plitude.Simmons and Hoskins (1979)include an analysis of a single trough initial condition
in spherical and Cartesian coordinates models. They analyze how this single trough spreads
into an ever-widening packet of waves whose edges are related to the maximum and mini-
mum speeds of the prescribed flow. New troughs and ridges appear on the leading and trail-
ing edges of the packet. Over time the new features increase in wavelength and grow at a rate
that exceeds and then asymptotes back down to the most unstable normal mode growth rate,
presumably due to NG.Wernli et al. (1998)use a localized structure derived from three circu-
lar potential temperature anomalies, and then track how the evolution differs between semi-
geostrophic and primitive equation versions of their model in the presence of barotropic
shear.Swanson and Pierrehumbert (1994)explore nonlinear integrations using a wave
packet on a baroclinically unstable jet for the initial condition. The carrier wave has several
maxima and several minima. Over time, the leading waves tend to have longer wavelengths
while shorter waves appear on the trailing end. This result is similar to linear solutions
(Simmons and Hoskins, 1979). Singular vectors using horizontally varying flows also have
localized structure (Buizza and Palmer, 1995). More will be said about singular vectors later.

Individual synoptic-scale lows in the atmosphere are not each part of a chain of highs
and lows. This conclusion is supported by studies likeGrotjahn and Castello (2000)who
composite 300 hPa and sea level pressure data for a dozen developing lows. When the data
are combined with the origin placed at the center of each trough, one finds no systematic
wavetrain of lows upstream or downstream. Instead, the trough starts out isolated and only as
it begins to grow do an upper downstream ridge and a lower upstream ridge develop. These
adjoining ridges are set up by the vertical motions within the cyclone (Grotjahn, 1996b). A
similar pattern develops in nonlinear Eady-type model calculations initialized by a single
localized trough (Hakim, 2000). Hakim also interprets his results using singular vectors. A
similar evolution is reproduced in a nonlinear quasi-geostrophic model integration starting
from a quite localized initial state (Rotunno and Bao, 1996; Fig. 8). The initial state used
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by Rotunno and Bao has a vertical trough (no upstream tilt) with weak adjacent highs and
lows created by modulating a wavetrain by an inverse distance squared zonal envelope. The
envelope they use is not based on the dynamics, so there can be significant projections onto
baroclinically unstable modes and also modes of different phase speeds. Such differing
speeds can allow nonmodal growth to occur as well. In the application shown here, we use
a QG model with fewer approximations than Eady’s and we choose our localized initial
state based on linear dynamics.

Observations typically reveal that an upper (and perhaps a lower) trough propagates
with little or no amplification for one or more days before cyclogenesis commences (e.g.
Grotjahn, 1996a). So prior to amplification, the normal mode and nonmodal growth mech-
anisms (and other things such as nonlinear amplification, downstream energy propagation,
and diabatic processes) are either each small or these growth mechanisms are largely can-
celing. When observed cyclogenesis commences, all of these processes presumably come
into play in varying degrees. The scope of our test application is much narrower. Here,
an isolated vortex is defined that remains coherent and stable in a linear calculation. The
linearly stable vortex is subject to nonlinear advection and so is distorted; more importantly,
structures develop from the nonlinear interaction that could release nonmodal instability or
excite growing normal modes. In fact, numerous eigenstructures are activated by the non-
linear interaction of the modes comprising the initial and subsequent states. The question
addressed by our application is whether normal mode and/or nonmodal baroclinic instabil-
ity are activated and to what relative degree by nonlinear advection. (Again, each IC has
negligible NG and NMBI in a linear calculation.) To limit the scope further, our application
emphasizes only a few archetype initial conditions (and amplitudes).

The next section describes the eigenvalue and initial-value models used here. The eigen-
functions are used to construct a localized IC. The third section describes the method of
constructing a localized structure. The fourth section describes and analyzes example linear
and nonlinear calculations using one or two of these localized structures in an IC. The final
section presents a summary and further discussion.

2. Model design

Initial-value calculations are performed using linear and nonlinear forms of a quasi−
geostrophic initial−value model. The nonlinear form of the interior QG potential vorticity
(PV) equation used here is:
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Perturbation stream function isψ . Upper case letters denote the prescribed basic state where
U and∂Q/∂y can be functions ofz andy. The equations have been made nondimensional
using typical scaling magnitudes for horizontal length (L = 1000 km), vertical depth (D =
10 km), speed (V = 10 m/s), and advective time scale (L/V = 105 s). The parameterε
(=f0D/{NL})2 relatesL to the Rossby radius of deformation and so is inversely proportional
to Brunt-Väisälä frequencyN. Density (ρ) and static stability are functions of height (z) only
and are chosen to match theUS Standard Atmosphere (1976)midlatitude profiles (Grotjahn,
1980, has further details). The model uses Cartesian coordinates on a midlatitude “β-plane”
channel having linear Coriolis variation. This model is hereafter labeled theG model.

The basic windU reaches its maximum value at the tropopause (z = 1.0) and decreases
with height in the model’s stratosphere. Two horizontal specifications are tested: no hor-
izontal shear with peakU-values of 1.2 or 3.6 units and a Bickley jet with peakU-value
of 3.6 units. Each unit is 10 m/s. No horizontal shear basic flow uses basic state stream
function,ΦB = −yU while the Bickley jet usesΦB = −tanh(y)U .

These equations are solved numerically as eigenvalue and initial-value problems. Both
models are spectral in the horizontal and use second-order finite differences in the ver-
tical. The eigenvalue model assumes complex exponential time dependence, while the
initial-value model uses a third-order Adams–Bashforth scheme for time integration. Each
model uses 21 vertical levels. All fields are represented spectrally. No horizontal shear cal-
culations use 11 wavenumbers (k) in x and 5 wavenumbers (m) in y for the IC. The Bickley
jet cases use 11 wavenumbers inxand 10 iny. The relatively small number of Fourier modes
is chosen to simplify the construction of the initial conditions and expedite the eigenvalue
model solution. A domain scale is chosen so that the linearly most unstable normal mode
occurs at wavenumber 3.

3. Stable localized structure construction

The structures created here are localized in all three space dimensions. Some care is
needed in defining a localized feature as an IC. Arbitrarily prescribing an isolated PV max-
imum in a QG, initial-value model version of theEady (1949)model (say) results in a
solution that quickly decomposes into a chain of highs and lows due to the eigenstructures
inherent to that model. Similar dispersal of an arbitrarily defined local structure also occurs
in more advanced models. Ironically, it will be shown below that construction of an isolated
feature is easier in a model having fewer approximations than Eady’s. All normal modes
are unstable in theG model for the wavenumber ranges examined. Numerous neutral eigen-
modes also are present; these are labeled continuum modes, following past convention.
Since a linearly stable structure is desired, only the continuum modes are used to construct
that structure. The continuum mode properties are briefly reviewed, first.

The number of continuum modes is, typically, NM(NZ− 2) at each zonal wavenumber
(k) where NM is the number of meridional wavenumbers and NZ the number of vertical
levels in the model. If one constructs a stable and coherent structure using continuum modes
in theEady (1949)model, those continuum modes have sufficiently different phase speeds
that dispersion causes the local structure to quickly decompose into a chain of highs and
lows. When compressibility is included, as it is in theG model, the vertical structures of
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Fig. 1. Amplitude profiles of the growing normal mode (top left corner) and every continuum mode in a matrix
eigenfunction analog of theG model atk = 2.0. The eigenfunctions are calculated using 21 levels (they are
one-dimensional when there is no horizontal shear in the basic flow) for a given meridional and zonal wavenumber.
Respective phase speeds for each mode are also given. The growth rate for the normal mode isωl = 0.44.

individual continuum modes have greater localization in the vertical (seeFig. 1). TheG
model is used precisely for this reason.

When there is no horizontal shear, each continuum mode (like each normal mode) has
a single zonal wavenumber (k) and meridional wavenumber (m). When the mean flow
has horizontal shear, the individual eigenmodes have some localization in the direction
along which there is shear. In a jet flow, the eigenmodes tend to have structures ori-
ented along or about that jet. Since the continuum modes for a jet flow themselves have
across-flow localization, then modes for a jet flow are more efficient at constructing a
localized IC.
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Fig. 2. Example classes of stream function horizontal structures for continuum modes for a Bickley jet centered
at y = 0 at an upper tropospheric level. Patterns shown are: (a) and (b) mono-polar, (c) dipolar and asymmetric
across the jet, (d) symmetric or “camel” dipolar across the jet. (a) A zonal cross-section aty = 0 showing the
vertical localization, whereas (b)–(d) show horizontal structure.

Bickley jet continuum modes fall into several classes illustrated inFig. 2. There are
continuum mode eigenfunctions that have a mono-polar structure at each zonal wavenumber,
k. The mono-polar solutions have a single wavetrain along the axis of the mean flow jet
(Fig. 2b). Different modes will have one or more amplitude maxima in the vertical. The
faster-moving continuum modes have streamfunction extrema near the tropopause level,
where the mean flow is strongest. Slower modes have extrema above or below or both. When
Fourier coefficients of an eigenmode are examined, the smallestmhas the largest coefficient.
The continuum modes with larger dominantmhave some type of dipolar structure. Dipolar
means there are two wavetrains, one on each side of the jet axis; the wavetrains are commonly
opposite in sign and equidistant from the jet (Fig. 2c). The faster-moving dipole continuum
modes have wavetrains centered close to the jet axis in the horizontal and vertical. As the
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meridional separation between the two primary wavetrains becomes larger, the phase speed
drops. Dipole modes are useful to construct efficiently structures that are offset from the
jet axis. The vertical structure can be monotonic or have one or more zero crossings in the
vertical. So, a monopole or dipole structure is untilted, but it may reverse sign from upper
to lower troposphere (Fig. 2a). This combination is handy if one wants a tilted structure
constructed from continuum modes. Some continuum modes are “camel dipoles” meaning
that they have the same sign for the extrema on opposite sides of the jet (Fig. 2d). These
would be useful to construct efficiently broader or narrower modes centered upon the jet. In
combination with dipole modes that reverse sign across the jet, one can efficiently construct
localized features offset from the jet. In summary, the continuum modes are already localized
by the mean flow horizontal shear. This property can be exploited when constructing a
localized structure for a mean flow jet.

Each IC is formed from continuum modes. The continuous spectrum in theG model
has eigenfunctions with localized vertical structure and similar phase speed at different
wavenumbers. For example,Fig. 1 shows vertical profiles of amplitude for the 17 contin-
uum modes (plus the most unstable normal mode) at zonal wavenumberk = 2.0 for the
eigenvalue problem corresponding to the no horizontal shear, peakU = 1.2 units mean
flow. The phase speed,c of each mode is indicated as well. The peak amplitude of a contin-
uum mode often occurs at a level where the mode’s phase speed is similar to the basic flow.
A similar range of structures is found at other zonal wavenumbers. For longer waves, the
localized continuum modes tend to be broader (in the vertical) than those shown inFig. 1
and vice versa for shorter waves. These properties are used to construct initial conditions
that also have localized vertical structure and similar phase speed. Various constructions
tested were ICs’ confined near the surface or centered in the upper troposphere. Depending
on the target level, the trough may be “shallow” or “deep”. A “shallow” trough is illustrated
in Fig. 3d; the “deep” trough (Fig. 3a–c) emphasized here has greater vertical extent and is
centered at a lower level. ICs like those shown inFig. 3select continuum modes with little
range of phase speed and so NG is small in a linear calculation.

The construction of an initial condition when no horizontal shear is present proceeds
as follows. The eigenfunctions of a given background flow are found. Next, grouping and
then selecting the appropriate members of the continuous spectrum is a straightforward but
tedious task. A “target level” is chosen where one desires the IC to have largest amplitude.
Next, those members of the continuous spectrum with greatest stream function amplitude
near the target level are identified for each zonal wavenumber. At each zonal wavenumber,
the member with the phase speed closest to the target phase speed is selected. This target
phase speed is initially set to the value ofU at the target level. In practice, some adjustment
of the target level and target speed is needed to accommodate the properties of the discrete
set of continuum modes actually present in the eigenmodel. For example, all continuum
modes used to construct the shallow upper trough inFig. 3dhave phase speeds that differ
by less than 5%. Further checking is needed since the closest phase speed match may be a
mode with undesirable vertical structure. For example, if the first mode chosen may have
two maxima in the vertical; in that case the mode with the next closest phase speed match
is checked. If the next mode has a single maximum it is selected. At this point one has a
selection of continuum modes, one for each zonal and meridional wavenumber combination
and these modes have similar phase speed and vertical structure.
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Fig. 3. Initial conditions emphasized in calculations discussed here. Horizontal structure (x vs.y) at (a) tropopause (z = 1.0) and (b) surface (z = 0) levels for the “deep”
IC. Zonal cross-sections (x vs.z) for the (c) “deep” IC and (d) the “shallow” IC. (a)–(d) A basic flow with no horizontal shear. (e)–(h) The Bickley jet basic flow using
the “mid” IC with amplitude 3. Horizontal structure (x vs.y) at (e) tropopause (z = 1.0) and (f) surface (z = 0) levels for the “mid” IC. (g) The sum of the “mid” IC plus
Bickley jet at tropopause level. (h) The zonal cross-section (x vs.z) for the “mid” IC aty = 0. The labels shown in (a) and (b) are referred to again in calculations shown
in Figs. 4 and 6. The labels in (e) and (f) are referred to again in calculations shown inFigs. 7, 8 and 10. The contour interval (0.25 units) is the same in all panels. The
labels in (a), (b), (e), and (f) refer to: tropopause level (U), surface (S), and relative minimum (L).
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Fig. 3. (Continued).



R. Grotjahn et al. / Dynamics of Atmospheres and Oceans 37 (2003) 25–54 35

The localization in the horizontal can be done by several means. A Gaussian inxandycan
be decomposed into Fourier coefficients. These coefficients are used as weights for thekand
mcorresponding to each continuum mode selected above. The result is an IC that is meridion-
ally, zonally, and vertically localized and is comprised of modes having similar phase speed.

An “alternative method” uses Fourier coefficients for a Gaussian inx only. The IC is
constructed from continuum modes with meridional wavenumberm = 0. To construct the
y variation one first multiplies thex andz structure by a Gaussian variation iny. Normal
modes havingy variation are present in this structure. Unstable normal modes rapidly grow
to dominate the solution in test calculations. So, an additional step is employed to filter
out these normal modes. The IC is projected onto all the eigenmodes as defined in the
numerical model, the amplitude for any growing or decaying normal mode is set to zero,
and the remaining projections reconstruct the initial state. The advantage of this IC is that it
simplifies the process of constructing the initial state since many fewer continuum modes
need be surveyed for use in the IC. The disadvantage is that this IC has more NG since
there is no control over the phase speeds of the continuum modes kept to construct the
meridional variation. An IC constructed this way therefore has more NG present than if all
the constituent modes were chosen to match a narrow phase speed range. In our tests, NG
remains small even in the alternative method of constructing the IC.

Constructing the IC for a mean flow jet is much simpler than the method described above
if one is satisfied with the localization already present in the eigenmodes. In the Bickley jet
application shown below, the 1890 eigenmodes were searched for three properties at each
zonal wavenumberk: zero growth rate, phase speed near a target value, and low meridional
wavenumberm. The choices were sufficiently distinct that a quick visual inspection of the
structure could confirm whether it was a mono-polar mode (e.g.Fig. 2a and b) and that it had
the horizontal and vertical localization sought. The ICs shown inFig. 3e–hwere constructed
from just 10 continuum modes, one for eachk. The phase speeds of these continuum modes
increases slowly and monotonically with wavenumber such that thek = 10 mode moves
14% faster than thek = 1 mode. Results shown here have the basic flow removed. These
10 modes are then weighted as in a Fourier decomposition of a Gaussian exponential inx.
Several tropospheric localized structures have been tested, the example emphasized here
is shown inFig. 3e–h. This is labeled the “mid” structure since it reaches its maximum
amplitude in the middle and upper troposphere. A “lower” structure has also been tested
(not shown). In a linear calculation, the components of the mid structure move with speed
six to nine times that of the components of the lower structure.Fig. 3gprovides the reader
with a sense of how the total streamfunction appears in an archetype case.Fig. 3gshows
the combination of “mid” IC with amplitude 3 (arbitrary units) plus the stream function
associated with the mean flow Bickley jet at tropopause level.

4. Application to nonlinear advection in extratropical cyclogenesis

4.1. General comments

Extratropical cyclones have favored regions for development. On a surface weather map,
cyclones appear to be developing at different rates, not as part of a wavetrain. As stated
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in Section 1, composites of typical cyclones (Grotjahn and Castello, 2000) show a single
trough, not a wavetrain prior to cyclogenesis; an adjacent high develops as the cyclone
intensifies. These properties suggest that it would be appropriate to examine cyclogenesis
with a localized structure. Again as stated above, most studies use either an arbitrarily
defined localization (which usually quickly breaks down into adjacent developing cyclones
and which contains linearly unstable normal modes as well as other modes of various phase
speeds) or no localization at all. Our ICs avoid undesirable decomposition into one or more
wavetrains that would otherwise result from linear dispersion of constituent modes. This
does not mean our ICs are ideal representations of observed conditions prior to cyclogenesis.
Observed trough precursors often do generally maintain their coherence, but precursor
troughs can have appreciable amplitude, enough so that nonlinearity cannot be neglected.
The nonlinear balance in observed troughs that grow slowly may allow linearly unstable
constituents, constituents our ICs exclude. Unstable modes (growing and decaying) are
excluded because if they are not, these modes tend to rapidly grow and dominate the solution
in both linear and nonlinear versions of the model. They no doubt grow rapidly in related
studies, such asHakim (2000). Therefore, the presence of unstable modes obscures the
focus of this application upon the role of nonlinear advection in triggering NMBI or NG
for an initially localized feature. As such, this application considers just a small aspect of
cyclogenesis from a novel perspective.

Each IC is constructed from eigenfunctions arising from a formulation linearized about
a prescribed basic flow. So, the basic flow dictates the structures with which one may work.
Accordingly, two basic flows are used: one having vertical shear, but no horizontal shear
and the other a zonally oriented internal jet. These basic flows illustrate the two archetypes
used in most prior linear instability work. The magnitudes of the basic flows are chosen to
match winter climatological values.

Results are interpreted using several simple tools since no single tool fully illuminates
the relative importance of NMBI and NG. In addition to displaying the perturbation fields
as they evolve over time, growth rates of various diagnostics are examined.

Domain-wide integrals of total energy (E) and RMS amplitude (L2 norm) have been
used in many prior studies (e.g.Hodyss and Grotjahn, 2001) to help assess the relative
importance of normal mode and nonmodal growth in linear studies. These tools have less
utility for this study but are kept to provide a point of comparison to other works. During
the evolution, individual, adjoining highs and lows appear and the region covered by eddies
expands. So, the behavior of individual troughs and ridges can be obscured by the aggregate
behavior seen in the global growth rate.

An alternative is to track individual troughs and ridges. Challenges arise when tracking
features. The sizes and shapes of the troughs are changing, and the troughs split and merge
with other troughs thereby making it arbitrary to identify the area encompassed by a given
trough (say) over time. Our solution was to track the values of the perturbation stream
function extrema at a single level (similar to whatSimmons and Hoskins, 1979show) as
a proxy for an amplitude norm of the individual feature. “Perturbation” refers to that part
of the height field when the portion of the height field due to the mean flow has been
removed. “Extrema” means the peak values at high and low centers. These extrema growth
rates include highs and lows that emerge during the integration as well as those at the
start. The extrema are separated into those near the tropopause and those at the surface. An
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alternative is to track extrema of vorticity (Müller et al., 1989). The extrema growth rates are
only approximate measures of the intensification given the horizontal (and vertical) scale
changes that occur. Often, the individual lows and highs start with small scale and expand
in all three directions.

To assess the importance of NG is difficult in these simulations because the scale varies
over time as well as between the individual features. A broad characterization will be made
based on how the growth rates (either of the aggregate or of individual features) compare
to normal mode values. Growth rate time series having values exceeding the comparable
(in scale) unstable normal mode indicate NG in a linear calculation. Significant NG can be
present in a linear calculation for lesser growth rates if the structure differs significantly
from the unstable normal mode (i.e. if the emerging normal mode is a tiny fraction of
the total perturbation). Here, nonlinear interaction can place amplitude into various modes
including unstable normal modes not present at the start. Projecting the total solution onto
the eigenmodes illuminates this process.

Calculation of the projection onto the set of normal and continuum modes reveals the
amplitudes (and rates of growth) for the eigenmodes during the time integration. Growth
rates for key eigenmodes are calculated and separated into contributions from linear growth
and (when present) nonlinear forcing. This procedure highlights how nonlinearity triggers
and enhances the normal mode instability. As a typical integration proceeds the most un-
stable modes begin to emerge due to the nonlinear interaction (as are most if not all the
eigenmodes).

The governingEqs. (1) and (3)are separable into tendencies by linear and nonlinear
terms. One may project the QGPV onto individual eigenmodes to obtain time series of the
modal amplitudes. Thus, a simple formula for the amplitudeAj of thejth normal mode may
be written:

dAj
dt

= nlFj + σjAj . (4)

The growth rate of thejth normal mode isσ j . The termnlFj is the contribution to theAj
tendency from the nonlinear Jacobians in (1) and (3); it varies slowly as the flow is distorted.

Each IC is structured to have relatively little change over time in a linear calculation.
Consequently, the focus here is upon the nonlinear results, whose evolution depends upon
the amplitude assigned. IC construction and nonlinear evolution differ between basic flows
with and flows without across-flow horizontal shear. So, a representative example is shown
for each type of mean flow. Other ICs and other amplitudes are commented upon, but
generally not shown to shorten this presentation.

4.2. Mean flows without horizontal shear

A typical stream function evolution over time is shown inFig. 4 using the “deep” IC.
Early in the nonlinear evolution, the upper level trough develops a NW-SE oriented axis tilt
due to the superposition of eddy and basic state winds on the S side of the trough and their
cancellation on the N side. In addition, secondary lows and highs appear adjacent to the
main trough. The IC has no appreciable trough or ridge at the surface, so growth is more
rapid at low levels as troughs and ridges appear and rapidly gain amplitude roughly to match
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Fig. 4. Contour plots of stream function at timest = 2, 4, 6, and 8 during an integration starting from the “deep” trough IC (Fig. 3a–c) on a horizontally uniform basic
flow. Evolution at tropopause level is shown in row (a) and surface evolution is shown in row (b). The contour interval (0.1) is the same throughout. Labels refer to:
tropopause level (U), surface (S), relative minimum (L), and relative high (H) features. These features are tracked for extrema growth rates shown inFig. 6.
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the corresponding upper feature(s). In contrast, theoriginal upper trough (that present in
the IC) typically has little amplitude change during the integrations described. For larger
amplitude, the distortion of the initial trough shape occurs sooner and adjoining highs and
lows grow more rapidly, as well. Several other magnitudes were examined. The other ICs
have broadly similar evolution.

Time series of global growth rates for mass-integrated amplitude (L2) and total energy
(E) are discussed next. Exponential growth at a constant rate, exp(rt), would show up as a
straight line at valuer for the L2 norm. For a normal mode,E grows at twice the rate as the
root mean squared amplitude (L2) norm.

The growth rates are compared to the linear normal mode values solely to make a quali-
tative assessment of the amount of NG occurring. The normal mode values depend on the
specified mean flowU. So, the comparison is imperfect since the nonlinear calculations lead
to local variations in the shear that presumably increase or decrease the linear instability
locally. Also, many wavenumbers are present and the “main” one is difficult to estimate
for a localized feature. With those caveats, the width of the upper trough in these ICs is
about half the zonal wavelength of the most unstable mode, i.e. the initial trough has similar
horizontal scale to the most unstable mode. The most unstable (of all the unstable) nor-
mal modes has linear growth rate 0.44 in the basic flow without horizontal shear. Several
modes are unstable at each wavenumber. In the linear version of this model configuration,
the growth rates spectrum constructed from the most unstable modeat each wavenumber
has a broad maximum. Other spectra may also be plotted for the second, third, and fourth
unstable modesat each wavenumber. These other spectra also have broad maxima with
their individual peak values at the same wavenumber as the most unstable mode of all. The
broad maxima means that the growth rates vary slowly with wavenumber. For example,
the growth rates of the four most unstable modes at a wavenumber that is 0.7 times the
wavenumber of the most unstable mode of all are only 10–25% less than the growth rate
of the most unstable mode of all. Similarly, at a wavenumber 1.3 times the wavenumber
of the most unstable mode of all, the growth rates of the top four most unstable modes at
this shorter wavelength are only 10–25% less than the rate of the most unstable mode of
all. The larger amplitude troughs and ridges that form during the integrations all tend to
have wavenumbers within 0.7–1.3 times the wavenumber of the most unstable mode of all.
Consequently, our qualitative assessment is that growth rates must be much greater than 0.4
for NG to be considered “large”. NG is at best “moderate” for growth rates within 20% of
0.4 if the growing normal modes are a small fraction of the total solution at that moment.
That would be true early on in the integrations shown (t < 3 for the no horizontal shear
cases). Later in the integrations examined here, projections of the total solutions onto the
eigenmodes finds most of the amplitude in several unstable normal modes.

The growth rates are not shown forlinear integrations of the initial conditions since
they remain small during the integration. The eigenmodes hardly interact in the linear
model since the relative phase is hardly changing between the constituent modes, so little
nonmodal growth is present and each mode individually has zero growth rate. For upper
trough ICs tested, the global growth rates remain essentially zero (<10−4) throughout a
linear integration. Plots (not shown) of the stream function at various times in the integration
mainly show the trough propagating across the domain. The most detectable change is the
gradual appearance of adjacent highs and lows along they = 0 axis. The dispersion of
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Fig. 5. Time series of global growth rates for the nonlinear calculations using (a) “shallow” IC at two amplitudes
and (b) “deep” IC (seeFig. 3). In each case the basic flow is horizontally uniform.E is the total energy integral;
L2 is the amplitude norm. The solid lines in (a) result from using the IC amplitude shown inFig. 3d. The dashed
lines in (a) are for a run with twice the initial amplitude. The most unstable of all normal modes growth rate is
0.44 for L2, 0.88 forE.

amplitude leads to a slow decrease in the peak amplitude of the initial trough. A slight
decrease over time of the main trough’s peak amplitude is seen in nonlinear integrations
(Fig. 4) as well, though to a lesser extent since unstable modes are also activated. The linear
growth rates for ICs constructed by the “alternative method” show more NG since there
is a wide spread in the phase speeds of the constituent modes but the NG always remains
“small”. Peak values during a linear integration of the alternative method IC briefly reach
0.06 units, with small negative values prevailing during much of the integration (see Fig. 1
in Grotjahn and Hodyss, 1999).

Global growth rates are shown inFig. 5for severalnonlinearcalculations using ICs shown
in Fig. 3. These growth rates remain small as compared to linear normal mode growth rates
based on the flowU. Little growth occurs until after 6 units of time for the standard shallow
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IC. When the magnitude is increased the growth occurs sooner. For example, doubling the
magnitude of the standard shallow IC leads toE and L2 growth rates exceeding 0.1 units
after 4 units of time. Also, for larger amplitudes the time series ofE no longer looks like
a doubling of the L2 series; for example, L2 global growthexceeds Egrowth for the first
∼5 units of time using the shallow IC with doubled amplitude (seeFig. 5a). The deep IC has
comparable peak values as the standard shallow IC (not shown), but the deep IC develops
perturbations more rapidly as seen inFig. 4. As seen inFig. 5b, the growth rate exceeds
0.1 after∼4 units of time for L2. After 10 units of timeE and L2 growth rates oscillate
about a value roughly half that of the most unstable mode. However, the perturbation field
has highs and lows covering the domain byt = 10 and results are no longer applicable
to development of a “localized” feature. For the “alternative method” IC, the growth rates
time series (not shown) are more regular, matching the linear simulation until∼3.5 units of
time. After that the growth rates increase smoothly, with little oscillation, up to the most
unstable normal mode rate.

Our second measure of growth tracks individual highs and lows. Growth rates are calcu-
lated from the extreme values at high and low centers of stream function when the portion
due to the mean flow is removed. Instantaneous growth rates are not calculated since they
become swamped by amplitude variations created as a center moves between grid points. To
avoid this problem, time average extrema growth rates over 0.5 units of time are estimated.
These rates are shown inFig. 6for selected features of the standard deep IC simulation. The
estimates are made for all features that can be unambiguously tracked for at least 0.5 units
of time. The main trough in the IC is labeled “UL1” and it is clear that this trough has little
growth with time. It is also clear that most surrounding features do not grow with spectac-
ular speed. Rarely does an extrema growth rate exceed the range for normal modes. While
NG is very likely present, close inspection of the emerging features finds upstream tilts and
comparable amplification at upper and lower levels. The tilts develop over time opposite to
what typically occurs for the NG mechanism. For example, UL2 and UL5 inFig. 4ahave
companion surface lows (SL2 and SL4, respectively) inFig. 4b; all of these nearly double
in magnitude between times 6 and 8. Lack of tilt change and similar development at all
levels are properties more typical of normal mode growth (NMBI) than NG.

For unstable normal modes that tend to dominate the solution, theAj tendency in (4) is
positive and roughly constant due almost entirely to nonlinear forcing. If the mode reaches
sufficient amplitude and is strongly unstable in a linear sense, linear exponential growth
may dominate. Alternatively, the nonlinear forcing may become negative and partially or
greatly negate exponential growth of a particular normal mode by the linear terms.

Table 1summarizes linear and nonlinear growth rates of three key normal modes for the
standard shallow IC integration. The nonlinear forcing activates different normal modes to
differing extents. The table illustrates a range of variation over time, also seen in other modes,
by tracking the two modes having the largest amplitudes at time 10 as well as thelinearly
most unstable normal mode. For the weakly unstable normal mode (#100) the nonlinear
terms dominate throughout the period keeping this mode consistently one of the largest am-
plitude modes. The nonlinear growth rate declines over time as this mode gains amplitude
while the tendency changes more slowly. For the moderately unstable mode (#10) the nonlin-
ear contribution to normal mode growth dominates at the start but quickly diminishes. After
time 4, the nonlinear terms are decreasing the amplitude of this mode. So, the nonlinear terms
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Fig. 6. Growth rates of selected extrema vs. time. (a) Upper and (b) lower levels for the “deep” IC for the horizontally
uniform basic flow. The linear growth rate of the most unstable normal mode of them all is 0.44 and is plotted as
a dashed line; for scales similar to the troughs and ridges that develop, their corresponding linear normal mode
growth rates would be within 10–25% of the most unstable value.

do not always increase the mode over time. A similar effect prevents the most unstable mode
(#1) from dominating. At time 5 the nonlinear decay is so strong that the total growth rate
for mode #1 is negative. Thus, at time 10 the most unstable mode has only the sixth largest
amplitude of the normal modes. The table reveals that a nonlinear growth rate much larger
than the normal mode growth rate can be sustained for a long time. For the deep IC many
of the same modes are again prominent and a similar wide range of growth rate time series
occur.

Similar results are found in some related studies.Pedlosky (1981)shows that nonlinear
interaction of weakly unstable modes leads to initially rapid growth by the most unstable
mode but that later nonlinear interaction causes that mode to decline in favor of another
mode. The favored mode has larger value of a parameter that tends to be larger if the
wavelength is greater than the most unstable mode. The most unstable mode is not favored
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Table 1
Instantaneous growth rates of selected normal modes for a mean flow without horizontal shear and using the
“shallow” IC

Mode # Property Time

1 2 3 4 5 10

Linear growth rate= 9.03E−03 (k = 0.7,m= 0.9)
100 Amplitude 5.67E−02 0.212526 0.431349 0.681857 0.942824 4.287413

Total 1.96291 0.91219 0.55272 0.38086 0.27328 0.35482
Nonlinear 1.95367 0.90310 0.54366 0.37182 0.26423 0.34579

Linear growth rate= 0.315331 (k = 1.3,m= 0.6)
10 Amplitude 0.169318 0.367624 0.568212 0.744792 0.889364 3.726187

Total 1.11099 0.55499 0.33898 0.21219 0.15965 0.27522
Nonlinear 0.79565 0.23966 0.02370 −0.10314 −0.15568 −0.04010

Linear growth rate= 0.434853 (k = 2.0,m= 0.3)
1 Amplitude 9.81E−03 3.86E−02 7.57E−02 0.10128 9.15E−02 1.474952

Total –a 0.92399 0.46522 0.11169 −0.29599 0.47658
Nonlinear –a 0.48911 0.03042 −0.32316 −0.73082 0.04170

Total growth rate (“total”) and that growth rate from just the nonlinear terms (“nonlinear”) are listed. The difference
is the linear growth rate for the indicated mode. The two modes with largest projection amplitude (“amplitude”)
at time 10 are tracked along with the sequence for the most unstable normal mode. “Mode #” refers to the linear
instability rank; the most unstable mode is #1, the 10th is #10, etc.;kandmare zonal and meridional wavenumbers,
respectively of the dominant Fourier coefficient. All numbers are nondimensional.

a Growth rate not calculated.

in our results either. Many favored modes have longer wavelength. For both the shallow and
the deep ICs, the 10th, 12th, and 55th most unstable modes (having absolute wavenumbers
α = 1.43, 1.84, and 1.48, respectively) were favored more than the linearly most unstable
mode (α = 2.02). The 100th mode (Table 1) is most strongly forced and it hasα = 1.14.
However, a couple of the normal modes favored more strongly than the most unstable mode
have smaller scale (α > 2.02).

Hakim (2000)tracked the most unstable normal mode in a nonlinear integration of an
Eady-type model for a single-vortex IC. He finds growth similar to the linear rate during the
first 30 h (∼1.1 units of time here) and declining thereafter. He also concludes that “nearly
all” surface development is from activated growing normal modes. He further anticipates
that stronger initial disturbances will shorten the time of development.

Malardel et al. (1993)define ICs for a nonlinear, semi-geostrophic model by introduc-
ing “nonmodal” upper level vortices above a frontal zone. What emerges in every case is
reportedly the same as when a normal mode is used for the vortex instead.

4.3. Bickley jet solutions

The linear integration for the Bickley jet differs from the linear integration for the mean
flow without horizontal shear in the following ways. The solution is not as coherent when
the jet is present due to slight differences in the numerics of the eigenvalue and initial-value
formulations and to faster eigenmode phase speeds. The linear integration maintains a
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single trough quite similar to the IC and propagates it across∼5 units distance during the
first 3 units of time. A leading upper high first becomes apparent only by time 3. Between 3
and 4 units of time, the single trough begins to split and adjoining troughs and ridges begin
to appear. Between 4 and 5 units of time, structures that look like unstable normal modes
appear all along the jet: they have upstream tilt, have constant tilt over time, have extrema at
the surface and upper troposphere, and move at a slower rate matching the unstable normal
modes (instead of the IC trough’s faster early speed). The phase speed difference explains
the trough split: an unstable normal mode is excited at the start in phase with the IC trough,
but since the unstable mode moves slower than the continuum mode components of the
IC trough, the IC trough has traveled further than the unstable mode. Hence, the unstable
mode becomes visible upstream from the IC trough at a later time, giving the appearance
that the IC trough has split. An untilted structure (the IC trough) continues to propagate
until t = 4.6 units but after that time even it is swamped by growing modes with upstream
tilt. Clearly, unstable normal modes are emerging; they become predominant after 6 units of
time. For this reason, the nonlinear calculations are halted aftert = 6, and our interpretation
focuses upon the first 3–4 units of time.

A representative example of nonlinear evolution uses the “mid” IC with moderate am-
plitude (=3) and is shown inFig. 7. As with other nonlinear calculations, highs and lows
develop larger horizontal extent (larger than the most unstable linear modes) over time.
The total flow should cause the high south of the upper trough in the IC to move counter
clockwise around that IC trough. That rotation does not occur because a new low devel-
ops on the SE side of the upper IC trough. Fromt = 1–2, this new low develops then
merges with the IC low and the resultant trough is much broader than in the IC. Also
from t = 1 to 2, a high forms on the SE flank of the high to the N of the upper trough
in the IC, leading to a broader high N and E of the (broadened) upper IC trough. At
the surface, highs to the W and S of the IC trough develop and merge to form a strong
high to the SW of the IC trough. Hence, byt = 2, the upper pattern has a single broad
trough with a high to the NE while the surface pattern has a single broad trough with a
high to the SW. While adjoining highs and lows become more prominent fromt = 2
to 3, the pattern is predominantly the IC trough with a leading upper high and a trailing
surface high. Beyond about 4 units of time, wavenumber 2 dominates the pattern at up-
per and lower levels. The pattern tends to be more zonally confined and the individual
features larger in scale than eddies seen for the horizontally uniform basic flow (com-
pareFigs. 4 and 7). Several other integrations are discussed next for the Bickley jet basic
flow.

The expansion of the upper trough in the IC is complex and reveals the emergence of a
structure similar to an unstable normal mode from a corresponding linear problem. Those
two upper troughs slow down starting att ∼ 1 unit while the lower trough continues to move
eastward. Close inspection ofFig. 7 shows this process. A more quantitative depiction is
given inFig. 8. From t ∼ 2 to t ∼ 2.4 the upper trough does not move. By timet ∼ 2.5
the upper trough is again moving at a rate to match the lower trough, but the lower trough
is now east of the upper. Also, aftert ∼ 2.5 the phase speed is consistently about half
the initial speed.Fig. 8 implies the upstream tilt with height increases untilt ∼ 2.5 after
which the same tilt is maintained for the rest of the integration. The tilt is quite similar to
the most unstable normal mode. When viewed in an along-flow cross-section, the upper
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Fig. 7. Similar toFig. 4. A representative Bickley jet solution is shown at timest = 1.2, 2.4, 3.6, and 4.8. The “mid” IC (with amplitude 3) shown inFig. 3e–gis used.
Various extrema are labeled to facilitate tracking them between times. These labels are matched withFigs. 3e and f, 8 and 10. The contour interval (0.2) is the same
throughout.
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Fig. 8. Phase speeds of the main trough in the IC for two integrations of the “mid” IC on the Bickley jet. Speeds
are shown at two levels: tropopause (indicated by “U” labels) and surface (denoted by a “S” labels). Labels that
include “a3” have initial amplitude 3 while those with label “a1” have initial amplitude 1. A “Boxcar” moving
average over 0.5 units of time is used.

minimum splits; the trailing minimum migrates to a higher elevation than in the mid IC; by
t ∼ 4 the maximum is near tropopause level (z ∼ 1); the corresponding unstable normal
modes have the upper extrema at a similar elevation. During this time the lower trough in
the IC has grown more rapidly and consistently than the upper feature so that byt ∼ 3
the upper and lower troughs have the same amplitude. Hence, while the structure has the
phase speed, upstream tilt, and dual extrema (at surface and tropopause levels) of a normal
mode, the horizontal scale and the (relative) lower level amplitude are both larger than the
corresponding most unstable normal mode.

When a horizontally broader IC is used (still amplitude= 3), highs and lows again
develop similar large horizontal extent, however, the nonlinear evolution differs even early
on. Fromt = 0 to t = 1.2 the upper high on the south side of the IC appears to rotate
counter clockwise around to the E side of the upper trough. Aftert = 1.2 this upper high
becomes more and more prominent as does a surface high behind the IC trough. Byt = 2,
the upper field is dominated by the IC trough and that high to the E. The lower pattern has
highs flanking the IC trough to the E and W. After aboutt = 2.5, the pattern begins to
breakdown as several more highs and lows emerge. Byt = 6, the upper field is dominated
by wavenumber 2 while wavenumbers 1 and 2 are strongly present in the lower field. So,
the evolution differs, but the two integrations with different IC trough widths evolve into
solutions with similar large-scale structure.

When smaller amplitude (=1) is used, the evolution is much more similar for these two IC
trough widths. Again, the adjoining development is localized and asymmetric. The trailing
surface high and the leading upper high grow the largest first. This property is similar to
observed cyclone evolution (Grotjahn and Castello, 2000). Only aftert ∼ 3 units for the
narrower andt ∼ 4 units for the broader IC trough does another adjoining feature have even
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half the amplitude of these upper and lower dipoles. The emergence of the normal mode
like structure takes longer than for ICs having larger initial amplitude, but the progression
of events is similar. In this example, the upper low stops moving fromt ∼ 3.2 to t ∼ 3.6;
after that time the trough maintains upstream tilt and the tilted trough moves at about half
the initial speed in the IC.

Additional test runs were made using an analytic, Gaussian-like function defining a
single trough IC. This IC has similar structure as the mid IC trough (amplitude= 3), but
is not constructed solely from continuum modes. The purpose of this IC is to illustrate
what happens when an IC does not have the precise properties of the ICs chosen here:
structures with properties like unstable normal modes rapidly emerge. Since those modes
are wavetrains, the localization is rapidly lost. Within 1 unit of time the IC trough has
upstream tilt and relative maxima at the surface and upper troposphere; both properties
are quite similar to an unstable linear normal mode. A leading upper high and trailing
surface high also appear and have similar tilt. After 2 units of time, the leading high also
has surface and tropopause level maxima and tilt to match the IC trough. Beyond 2 units of
time, the zonally-varying (eddy) amplitudes are large enough that nonlinear distortions of
the development become quite apparent. (Such “nonlinear distortions” include significant
meridional motions of highs and lows by the eddy flow and merging of lows.) Past works
using similar analytic function ICs also find quick initiation of the leading upper high and
trailing surface high (e.g.Hakim, 2000, for a simpler model;Simmons and Hoskins, 1979,
for a more complex model than that used here).

When used alone, the low level IC trough tended to produce smaller scale surface features
than did the mid IC; eventually large-scale features appear at upper levels and these would
have associated broad scale surface features. This result again suggests the emergence of a
mode like an unstable linear normal mode, though as with the mid IC it has larger horizontal
scale than the most unstable mode.

When assessing NG for the Bickley jet it is useful to note these properties. First, the
unstable normal modes have much larger growth rates than for the no horizontal shear
cases. The most unstable normal mode has growth rate 0.81. Consequently, normal modes
become a prominent fraction of the total solution sooner than for the integrations using a
horizontally uniform mean flow. Also, since the eigenmodes now have localized structure,
these modes efficiently define the structure. Fewer modes have large amplitude when the
total solution is projected. Most of the few prominent modes are growing normal modes
after t ∼ 1–2 units. This result is probably general; in a linear study of a basic state jet in
spherical geometry, “realistic” ICs strongly projected onto a few unstable normal modes
(Grotjahn and Castello, 2002). So, it is now less valid to assign moderate growth rates
(between 0.4 and 0.8) to the NG mechanism.

Global growth rate time series for total energy and amplitude are given inFig. 9 for
the representative “mid” IC. Unlike the deep trough IC but similar to the shallow trough
IC for basic flows without horizontal shear, the two time series are quite similar early in
the integration. After about 2 units of time the energy growth rate consistently exceeds the
amplitude growth rate. From roughly 2.5 to 4.5 units of time the energy rate is twice that
of the amplitude rate. Again, energy growth rate is twice the amplitude growth rate for a
normal mode. After roughly 5.5 units of time, the domain is largely filled with eddies and
both global growth rates decline.
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Fig. 9. Similar toFig. 5 except for the “mid” IC, with amplitude 3, on the Bickley jet. Global growth rate time
series are shown of: the total energy (E: solid line) and the amplitude norm (L2: dashed line).

Growth rates of extrema at the tropopause and the surface levels are shown inFig. 10
for the representative “mid” IC. As was the case for basic flows without horizontal shear
(Fig. 6) the extrema growth rates rarely surpass the larger normal mode values. Again the
growth rates have large fluctuations during the early portion of the integration. At later times

Table 2
Similar toTable 1except for a mean flow with a Bickley internal jet and using the “mid” IC having amplitude 3

Mode # Property Time

1 2 3 4 5 6

Linear growth rate= 0.144908 (k = 0.7,m= 0.5)
24 Amplitude 20.7924 26.5987 13.0421 8.8767 56.1627 85.7946

Total 0.60923 −0.10102 −1.64612 −1.11471 1.00234 0.59510
Nonlinear 0.46433 −0.24592 −1.79103 −1.25966 0.85745 0.45019

Linear growth rate= 0.617707 (k = 1.3,m= 0.5)
3 Amplitude 19.9974 34.3001 54.4561 75.7415 100.7092 87.9544

Total 0.83853 0.37778 0.48205 0.257616 0.08382−0.01305
Nonlinear 0.22081 −0.23993 −0.13565 −0.360088 −0.53884 −0.63076

Linear growth rate= 0.813358 (k = 2.0,m= 0.5)
1 Amplitude 4.68391 7.8921 18.5062 33.4513 39.7967 16.8461

Total 0.29689 0.32538 0.76734 0.594323 −0.44223 3.56555
Nonlinear −0.60213 −0.57367 −0.13173 −0.304736 −1.34128 2.66649

Total growth rate (“total”) and that growth rate from just the nonlinear terms (“nonlinear”) are listed. The difference
is the linear growth rate for the indicated mode. The two modes with largest projection amplitude (“amplitude”)
at time 6 are tracked along with the sequence for the most unstable normal mode. “Mode #” refers to the linear
instability rank; the most unstable mode is #1, the 24th is #24, etc.;kandmare zonal and meridional wavenumbers,
respectively of the dominant Fourier coefficient. All numbers are nondimensional.
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(after t ∼ 3 units) the growth rates are more consistent over time. The IC trough initially
decays strongly at upper levels untilt ∼ 1.5 units consistent with a transfer of energy into
other modes with differing phase speeds and with the development of similar maxima at
surface and tropopause levels. Generally, when features have moderate or larger amplitude
(magnitude> 0.4) the growth rates are more consistent. Similar properties are seen in other
Bickley jet runs.

Similar toTable 1, growth rates are tracked for individual eigenmodes for the Bickley jet
calculations. A representative listing is presented inTable 2for the mid IC having amplitude
3. The two largest amplitude modes att = 6 are the 24th and 3rd most unstable modes.

Fig. 10. Similar toFig. 6 except for “mid” IC with amplitude 3 on the Bickley jet. The growth rate of the most
unstable linear normal mode is 0.81 for the Bickley jet used and is plotted as a dashed line. Letter labels refer to
features identified inFigs. 3e and f, 7 and 8.
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These modes have larger zonal and absolute wavenumber than the most unstable normal
mode. The most unstable mode is much smaller at that time, though at some earlier times
it is the largest mode. It is clear fromTable 2that the nonlinear forcing of the key normal
modes is more variable than for the cases where the basic state has no horizontal shear. Early
on, the 24th and 3rd modes have strong nonlinear forcing, but for much of the period these
modes are damped by the nonlinear terms. Throughout the period, the most unstable normal
mode is damped by the nonlinear terms, at times exceeding the rapid linear growth rate.

Tests using both upper and lower troughs in the IC have similar results as for the mean
flow without horizontal shear (not shown). Development wasnot triggered by the upper
feature coming into favorable location upstream of the low level feature. (Different initial
separations between the lower and “mid” troughs were tried, for close separation devel-
opment occurred after the “mid” trough had moved past the lower one, for wider initial
separation development occurred before the “mid” trough reached the lower.)

5. Summary and discussion

A technique is described by which quasi-stable localized structures are constructed from
stable eigenmodes. These structures are tested as IC in linear and nonlinear initial-value
models. Mechanisms for development can be controlled in a linear sense by defining an
initial feature whose decomposition into eigenmodes: (a) excludes baroclinically unstable
normal modes and (b) selects continuum modes of similar phase speed. The ICs tested
consist of either a vertically and zonally isolated trough centered near tropopause level, a
trough within the upper troposphere, a trough at the surface, or some combination of these
structures. The initial state is comprised solely of continuum modes with phase speeds close
to a target value. Hence, the resultant structure is localized in all three dimensions and tends
to remain coherent when the linear form of the model is integrated forward in time. Since
the constituent eigenmodes have very slow relative motion, NG is small. Since unstable
normal modes are excluded, NMBI is filtered from a linear calculation. This construct
allows examination of the nonlinear term’s contribution to growth. Some applications to
basic states having no horizontal shear or having a zonally oriented internal jet are two
archetypes of mean flows used in most prior linear instability work. The magnitudes of the
basic flows are chosen to match winter climatological values.

Nonlinear advection triggers unstable normal modes when meridional variation of the
perturbation is allowed, even if such modes were filtered out of the initial state. Global
exponential growth (Figs. 5 and 9) develops and becomes quite obvious after a few units
of model time. The structure of the initial trough becomes distorted (Figs. 4 and 7) and
baroclinically growing eddies appear in the domain. As can be seen inFigs. 4 and 7,
eddies form and expand in an irregular way from the initially localized disturbance. So, any
limited region chosen to capture any larger amplitude feature will not only be arbitrary, but
expanding in size and probably varying in shape over time. To avoid these ambiguities, the
development near the trough is examined several ways.

One method tracks the “extrema growth rates” of the peak values for individual lows
and highs (Figs. 6 and 10) similar toSimmons and Hoskins (1979). Almost none of these
extrema growth rates exceed the rate of unstable normal modes of comparable scale. When
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one does, it does so only briefly and it occurs when the feature first becomes visible on
a contour map. Further, these features have properties similar to growing normal modes
(companion amplitude changes at different levels, tropopause and surface relative maxima,
maintenance of upstream tilt, slower propagation speed). Quantitative evidence is found
by projecting the solution onto eigenmodes. The projections reveal that unstable normal
modes are found to have significant amplitude when the total solution is projected onto
them at various times in the integration. For the Bickley jet fewer than 10 normal modes
are dominant after a few units of time.

The normal modes have zero initial amplitude. The nonlinear advection terms dominate
normal mode changes at the start: activating those modes, enhancing some modes while
suppressing others. The nonlinear terms often prevented dominance by the most unstable
(linear) modes and tended to foster the development of larger scale modes (Tables 1 and 2).

The increase of scale is a property of nonlinear development in studies that donot local-
ize the solution. Increasing scale is found in weakly nonlinear studies byHart (1981)and
Pedlosky (1981). Numerical simulations allowing full nonlinearity (e.g.Gall et al., 1979;
Cehelsky and Tung, 1991; Whitaker and Barcilon, 1995) also obtain solutions with increas-
ing scale. Some studies find that if scale increased then how much it increased depended
upon other properties of the model. Using a two-layer model, Whitaker and Barcilon iden-
tify nonlinear energy transfers between wavenumbers to be greater at the most unstable
wavelength than at longer waves sufficient to make the net growth larger for the longer
wave.

Other studies find waves longer than the most unstable favored by mechanisms not present
in our model.Welch and Tung (1998)study thermal forcing (of the across-flow temperature
gradient by Newtonian cooling) in a two-layer, quasi-geostrophic, “β-plane” model having
just two unstable modes. They conclude that a longer wave can dominate when the heating
is too large for the linearly most unstable wave to equilibrate, so that wave breaks and
cascades energy to a longer wave which can (since it is less bottom trapped) transfer a
greater amount of heat. However, our model does not include any imposed heating. Gall
et al. notice that dissipation increases as eddies grow, and since the gradients of a short wave
are larger than those of a long wave of identical amplitude, the dissipation increases more
rapidly for the shorter waves, thereby favoring longer waves. However, our model does not
include any dissipation.Hakim (2000)uses a localized IC, visual inspection of his results
finds the primary trough in his nonlinear runs to increase in scale. While Hakim does not
discuss scale increase he does comment that larger scale initial conditions have stronger
surface development.

The localization of the stream function breaks down in the nonlinear calculations. Ad-
jacent to the initial trough, highs and lows emerge and grow. The emerging eddies may
appear somewhat similar to structures that emerge in other studies, such as Figs. 1 and 12
in Simmons and Hoskins (1979). Some readers may view the emerging eddies of that early
work as resulting from “downstream development”. However, a more likely explanation is
that those adjacent eddies arise from the rapid emergence of unstable normal modes present
in the IC used by Simmons and Hoskins. When we do not filter those modes out of our IC,
our solutions look more like those in Simmons and Hoskins: a chain of eddies lined up along
the axis of the mean flow arises very quickly. “Downstream development” probably does not
explain the bulk of the adjacent eddy development in our calculations usingfilteredIC. It is
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hard to argue for downstream development when considering ourFigs. 4 and 7. The solution
shown inFig. 4may seem consistent with downstream development in that the upper level
feature “UL2” develops more rapidly early in the period (Fig. 6) than other adjacent eddies.
However, upstream eddies “UL5” (with its associated “SL4”) have larger growth through
the middle of the period (Fig. 6). The Bickley jet solution shown inFig. 7 reveals that a
downstream eddy “ULNE” does grow rapidly through the time period. However, the highs
adjacent to the trough in the IC develop consistent with an observed property that follows
from the development of a divergent circulation (e.g.Grotjahn and Castello, 2000) and that
circulation is not correctly described as “downstream development”. The adjacent high at
upper levels is ahead of the trough (“UHA” inFig. 7) while the adjacent high at the surface
is behind the trough (“SHS”). The mixed evidence regarding “downstream development”
is one reason why bothFigs. 4 and 7are shown.

It is beyond the scope of this study, but our results may be interpretable in terms of
singular vectors. It may be that the initial state projects strongly onto a limited number
of singular vectors. The subsequent evolution may thereby be similar.Buizza and Palmer
(1995)show how singular vectors asymptote to the most unstable normal modes as the
optimization time is increased (and assuming an unchanging mean flow). We note these
similarities between their results and ours. First, globally-optimized singular vectors have
similar decrease of dominant wavenumber.Buizza and Palmer (1995)show how the peak
in the energy spectrum of the singular vector moves towards a lower wavenumber between
the initial time and its optimization time. Second, the troughs and ridges in the singular
vectors Buizza and Palmer show develop upstream tilt by the optimization time. Third, the
horizontal structure can be different at upper and lower troposphere (i.e. different shapes,
sizes, and relative locations of the highs and lows between levels). However, two factors
argue against the singular vector interpretation. First,Hakim (2000)projects his solution
for a localized IC in an Eady-type model onto the singular vectors and concludes that the
singular vector decomposition is not as efficient as a normal mode description. Second, the
singular vectors also had strong vertical axis tilts at the bottom boundary and fine vertical
structure, neither of which is present in applications described here.

A summary of the more important results of our test applications is as follows:

• Growth well in excess of the normal mode values is generally not found in global param-
eters (Figs. 5 and 9).

• During the integration, highs and lows form adjacent to the localized trough in the IC and
these have normal mode-like properties (Figs. 4 and 7). These features have upstream
trough axis tilts that they tend to maintain over time (Fig. 8). Their individual growth
(as measured using the central value) rarely exceeds a normal mode value of comparable
wavelength (Figs. 6 and 10). The adjacent highs and lows tend to develop relative maxima
of amplitude near tropopause and surface levels, analogously to normal modes.

• Projecting the solution onto eigenmodes finds that (a) growing normal modes are activated
by the nonlinear advection terms, and (b) nonlinear terms inhibit the most unstable mode
in favor of other, often larger scale modes (Tables 1 and 2).

• For the Bickley jet, the eigenmode depiction appears very efficient. A small number of
eigenmodes has significant amplitude after 1–2 units of time and most of these modes
are unstable normal modes.
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• Larger initial amplitude leads to faster breakdown of the localization.
• Relative to the trough in the IC, a leading upper high and trailing surface high develop;

these highs are subjectively similar to observations (Grotjahn and Castello, 2000).
• The development of the upstream tilt in a localized region as well as the scale change

are properties previously noted in singular vector work (Buizza and Palmer, 1995) but
work by Hakim (2000)using a simpler, but related model suggests that a normal mode
interpretation is more appropriate.
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