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of: the physics of LSMP life cycles, comprehensive model 
assessment of LSMP-extreme temperature event linkages, 
and LSMP properties are needed. Generally, climate mod-
els capture observed properties of heat waves and cold air 
outbreaks with some fidelity. However they overestimate 
warm wave frequency and underestimate cold air outbreak 
frequency, and underestimate the collective influence of 
low-frequency modes on temperature extremes. Modeling 
studies have identified the impact of large-scale circulation 
anomalies and land–atmosphere interactions on changes in 
extreme temperatures. However, few studies have examined 
changes in LSMPs to more specifically understand the role 
of LSMPs on past and future extreme temperature changes. 
Even though LSMPs are resolvable by global and regional 
climate models, they are not necessarily well simulated. 
The paper concludes with unresolved issues and research 
questions.

Abstract The objective of this paper is to review statisti-
cal methods, dynamics, modeling efforts, and trends related 
to temperature extremes, with a focus upon extreme events 
of short duration that affect parts of North America. These 
events are associated with large scale meteorological pat-
terns (LSMPs). The statistics, dynamics, and modeling 
sections of this paper are written to be autonomous and so 
can be read separately. Methods to define extreme events 
statistics and to identify and connect LSMPs to extreme 
temperature events are presented. Recent advances in sta-
tistical techniques connect LSMPs to extreme temperatures 
through appropriately defined covariates that supplement 
more straightforward analyses. Various LSMPs, ranging 
from synoptic to planetary scale structures, are associated 
with extreme temperature events. Current knowledge about 
the synoptics and the dynamical mechanisms leading to 
the associated LSMPs is incomplete. Systematic studies 
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1  Introduction to temperature extremes

Temperature extremes have large societal and economic 
consequences. While many heat waves are short-lived, 
longer events can have a large economic cost. Cold air out-
breaks (CAOs) tend to be short-lived but carry large eco-
nomic losses. Timing of the CAOs can be more important 
than the minimum temperatures of the freeze; during 4–10 
April 2007 low temperatures across the South caused $2B 
in agricultural losses since many crops were in bloom or 
had frost sensitive buds or nascent fruit (Gu et al. 2008). 
The event also exemplifies how monthly means can be mis-
leading: April 2007 average temperatures were near nor-
mal. In short, both hot spells (HSs) and CAOs have great 
societal importance and they are short-term events that do 
not necessarily appear in monthly mean data.

This report focuses on short-term (5-day or less) extreme 
temperature events occurring in some part of North Amer-
ica. Temperature extremes considered in this paper include 
both short-term hottest days (warm season) and CAOs 
(winter and spring) as these have the greatest impacts. Such 
events, both observed and simulated, have received con-
siderable attention (including research papers, e.g. Meehl 
and Tebaldi 2004; and active websites: http://www.esrl.
noaa.gov/psd/ipcc/extremes/, http://www.ncdc.noaa.gov/
extremes/cei/, and http://gmao.gsfc.nasa.gov/research/
subseasonal/atlas/Extremes.html). However, the emphasis 
here is on the less well understood context for the extreme 
events. Our primary context is the large-scale meteorologi-
cal patterns (LSMPs) that accompany these extreme events.

Temperature extreme events are usually linked to large 
displacements of air masses that create a large amplitude 
wave pattern (here called an LSMP). LSMPs have a spatial 
scale bigger than mesoscale systems but smaller than the 
near-global scale of some modes of climate variability. The 
LSMP often has some portion that is superficially similar 
to a blocking ridge, so a blocking index can be an LSMP 
indicator (Sillmann et al. 2011). Extreme events have also 
been linked to circulation indices like the North Atlan-
tic Oscillation (NAO) (Downton and Miller 1993; Cellitti 
et al. 2006; Brown et al. 2008; Kenyon and Hegerl 2008; 
Guirguis et al. 2011) the Madden–Julian Oscillation (MJO) 
(Moon et al. 2011) and El Niño/Southern Oscillation 
(ENSO) (Downton and Miller 1993; Higgins et al. 2002; 

Carrera et al. 2004; Meehl et al. 2007; Goto-Maeda et al. 
2008; Kenyon and Hegerl 2008; Alexander et al. 2009; Lim 
and Schubert 2011). However, LSMPs are likely distinct 
from climate modes for several reasons. First, named cli-
mate modes such as the NAO are common modes of varia-
bility, whereas the LSMP is presumably as rare as the asso-
ciated extreme event. Second, climate modes occur on a 
longer time scale than the LSMPs for the short-term events 
focused upon in this article. However, it is possible that an 
extreme event might occur when a climate mode has tran-
sient extreme magnitude or is amplified in association with 
another low frequency phenomenon. Third, tested LSMP 
patterns are not that similar to climate modes. In correlat-
ing eight NOAA teleconnection patterns (http://www.cpc.
ncep.noaa.gov/data/teledoc/telecontents.shtml) and Cali-
fornia LSMPs and in assessing the PNA contribution to 
last winter’s extreme cold in eastern North America (nei-
ther shown here), we do not find notable contribution from 
such modes. Several studies identified the LSMPs associ-
ated with specific extreme hot events (Grotjahn and Faure 
2008; Loikith and Broccoli 2012) and CAO events (Kon-
rad 1996; Carrera et al. 2004; Grotjahn and Faure 2008; 
Loikith and Broccoli 2012). Parts of these LSMPs tend 
to be uniquely associated with the corresponding extreme 
weather and those parts have some predictability (Grotjahn 
2011).

The LSMPs for extreme events are not fully understood 
for different parts of North America. Also, local processes: 
topography, soil moisture, etc. play key roles but there is 
a knowledge gap in how well climate models simulate the 
LSMPs as well as these local processes and how the local 
and global modes interact with LSMPs. Bridging these 
knowledge gaps will reduce the uncertainty of future pro-
jections and drive model improvements.

Now is an opportune time to summarize critical issues 
and key gaps in understanding temperature extremes vari-
ability and trends because: (1) it is not known if current 
climate models used for future projections are producing 
extremes via the correct dynamical mechanisms, which 
directly impacts confidence in projections, and (2) knowl-
edge of the LSMPs can improve downscaling (statistical 
or dynamical) by focusing attention on large scale pat-
terns that are fundamental to the occurrence of the extreme 
event. Conversely, global models that do not reproduce the 
magnitude or duration of extreme temperature events accu-
rately may still capture the correct LSMPs and facilitate 
downscaling. Finally, there is now sufficient preliminary 
work and growing interest to make a summary valuable.

From the LSMP context, the objectives of this review 
are surveys of: relevant statistical tools for extreme value 
analysis (Sect. 2), synoptic and dynamical interactions 
between LSMPs and other scales from local to global 
(Sect. 3), model simulation issues (Sect. 4), trends in these 

http://www.esrl.noaa.gov/psd/ipcc/extremes/
http://www.esrl.noaa.gov/psd/ipcc/extremes/
http://www.ncdc.noaa.gov/extremes/cei/
http://www.ncdc.noaa.gov/extremes/cei/
http://gmao.gsfc.nasa.gov/research/subseasonal/atlas/Extremes.html
http://gmao.gsfc.nasa.gov/research/subseasonal/atlas/Extremes.html
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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temperature extremes (Sect. 5), and various open questions 
(summary section). Different readers may be interested in 
different surveys. Accordingly, the sections are autono-
mous allowing a reader to skip to a particular section(s) of 
interest.

2  Extreme statistics and associated large scale 
meteorological patterns (LSMPs)

2.1  Definitions of extreme events

The expert team on climate change detection and indices 
(ETCCDI) under the auspices of the World Meteorologi-
cal Organization’s CLIVAR program provide a useful, but 
somewhat incomplete starting point to explore the relation-
ship between extreme temperatures and LSMPs. The ETC-
CDI indices as well as software to calculate them are avail-
able at http://etccdi.pacificclimate.org and are described in 
Alexander et al. (2006). The ETCCDI temperature indices 
are summarized in Table 1 and are designed for detect-
ing and attributing human effects on extreme weather 
and do not necessarily represent particularly rare events. 
However, extreme value statistical methodologies can be 
applied to quantify the behavior of the tails of the distri-
bution of certain ETCCDI indices and reveal insight into 
truly rare events (Brown et al. 2008; Peterson et al. 2013). 
Another common statistical measure is the return value 
(or level). Under a changing climate, the return value can 
be interpreted as an extreme quantile of the temperature 

distribution that varies over time (e.g., the 20-year return 
value may be interpreted as that value that has a 5 % 
chance of being exceeded in a particular year). Trends in 
these measures of extreme temperature are detectible at the 
global scale (Brown et al. 2008) and have been attributed 
to human emissions of greenhouse gases (Christidis et al. 
2005). At local scales, increases and decreases are observed 
reflecting the significant amount of natural variability in 
extreme temperatures.

Figure 1 shows observed trends over North America 
from 1950 to 2007 in 20-year return values of the hottest/
coldest days and hottest/coldest nights. The temperature 
of very cold nights (Fig. 1d) exhibits pronounced warming 
over the entire continent as does the temperature of very 
cold days (Fig. 1b). The pattern of changes in the tempera-
ture of very hot days (Fig. 1a) and very hot nights (Fig. 1c) 
follows that of average temperature change with strong 
cooling in the southeastern United States. This “warming 
hole” has been linked to sea surface temperature patterns 
in the equatorial Pacific (Meehl et al. 2007) and changes 
in anthropogenic aerosols in the eastern US (Leibensperger 
et al. 2012). Changes are more pronounced at the higher 
latitudes, except in Quebec and Newfoundland. This anal-
ysis extends the work of Peterson et al. (2013) and uses 
annual anomalies to define the extreme indices. Although 
illustrative of the statistical techniques, analyses of annual-
ized measures of extreme temperature cannot identify asso-
ciated LSMPs that develop and dissipate on a much shorter 
time scale. Furthermore, events of high and low impact are 
better separated in seasonal analyses.

Table 1  Some temperature 
related ETCCDI indices 
(Sillmann et al. 2013a)

For a complete list and formal definitions, see http://etccdi.pacificclimate.org/list_27_indices.shtml

ETCCDI index name Semi-formal definition Plain English

TX90p The percentage of days when the high temperature is 
greater than 90 % of those in reference period

Hot days

TX10p The percentage of days when the high temperature is less 
than 10 % of those in reference period

Cold days

TN90p The percentage of days when the low temperature is greater 
than 90 % of those in reference period

Hot nights

TN10p The percentage of days when the low temperature is less 
than 10 % of those in reference period

Cold nights

TXx Monthly or seasonal maximum of daily maximum  
temperature

Hottest day

TXn Monthly or seasonal minimum of daily maximum  
temperature

Coldest day

TNx Monthly or seasonal maximum of daily minimum  
temperature

Hottest night

TNn Monthly or seasonal minimum of daily minimum  
temperature

Coldest night

HWDI Heat Wave Duration Index Length of a heat wave

CWDI Cold Wave Duration Index Length of a cold spell

FD Days below freezing Frost days

http://etccdi.pacificclimate.org
http://etccdi.pacificclimate.org/list_27_indices.shtml
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2.2  Application of extreme value statistical techniques

The observed changes in Fig. 1 are calculated using a 
time-dependent point process approach to fit “peaks over 
threshold” statistical models (Coles 2001). In this case, the 
extension of stationary extreme value methods to a time-
dependent formalism used time as a “covariate” quantity 
to the ETCCDI indices (Kharin et al. 2013). A princi-
pal advantage of a fully time dependent formalism over a 
quasi-stationary approximation (Wehner 2004) is that the 
amount of data used to calculate extreme value parameters 
is substantially increased, resulting in higher quality fitted 
distributions and hence more accurate estimates of long 
period return values. Calculations involving climate model 
output gain additional statistical accuracy by using multiple 
realizations from ensembles of simulations, provided they 
are independent and identically distributed.

The “block maxima” and “peaks over threshold” meth-
ods to fit the tails of the distributions of random variables 
are asymptotic formalisms (Coles 2001). In this terminol-
ogy, “block maxima” refers to use of only the maximum 
value during each “block” of time, usually a single season 
or year. The resulting generalized extreme value (GEV) or 

Poisson and generalized Pareto distributions (GPDs) are 
both three parameter functions and can be transformed 
between each other. Hence provided that the data used to 
fit a distribution are in the “asymptotic regime”, i.e. far out 
in the tail of the distribution, the two methods are equiva-
lent. Uncertainty in the estimate of long period tempera-
ture return values resulting from limited sample size can be 
appreciable and may be as large as that from unforced inter-
nal variability (Wehner 2010). However, variations in these 
estimates from multi-model datasets such as CMIP3/5 are 
generally significantly larger.

Confidence in the estimates of the statistical proper-
ties of the tail of the parent distribution of a random vari-
able can be ascertained by exploring the sensitivity to the 
sample size used to fit the extreme value distribution. For 
block maxima methods, the length of the block is a sea-
son (or effectively so for temperature if the block length 
is a year). Lengthening the block makes the sample size 
smaller; shortening it makes the sample size larger since 
only one extreme value is drawn from each block. Such 
sensitivities are somewhat more straightforward to explore 
with peaks over threshold (POT) methods. Typical thresh-
olds may be chosen between 80 and 99 % depending on 

Fig. 1  Change over 1950–2007 in estimated 20-year annual return 
values (°C) for a hot tail of daily maximum temperature (TXx), 
b cold tail of daily maximum temperature (TXn) c hot tail of daily 
minimum temperature (TNx) and d cold tail of daily minimum tem-
perature (TNn). Results are based on fitting extreme value statistical 
models with a linear trend in the location parameter to exceedances 
of a location-specific threshold (greater than the 99th percentile for 
upper tail and less than the 1th percentile for lower tail). As this 

analysis was based on anomalies with respect to average values for 
that time of year, hot minimum temperature values, for example, are 
just as likely to occur in winter as in summer. The circles indicate 
the z-score for the estimated change (estimate divided by its standard 
error), with absolute z-scores exceeding 1, 2, and 3 indicated by open 
circles of increasing size. Higher z-score indicates greater statistical 
significance
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the size of the parent distribution that the extreme values 
are drawn from. However, standard POT methods may not 
discriminate between extreme values that occur at succes-
sive dates when the individual extreme values may not be 
truly independent. In these cases, declustering techniques 
(Coles 2001) are applied to avoid biased (low) estimates of 
the uncertainty. The trends in extreme temperature shown 
in Fig. 1 are calculated using such a declustering technique 
and a POT formalism with time as a linear covariate. An 
alternative approach retains possibly dependent consecutive 
extremes, adjusting the estimates of uncertainty through 
either resampling or more advanced techniques for quan-
tifying extremal dependence (e.g., Fawcett and Walshaw 
2012). Furthermore, LSMPs responsible for extreme events 
can be formed using only the dates of the onset of the 
event (e.g. Grotjahn and Faure 2008; Bumbaco et al. 2013) 
reducing the risk of autocorrelated extremes. In the cited 
studies, a 5 day gap was typically required between events. 
Low frequency factors (or climate modes), such as ENSO, 
are best treated using the previously mentioned covariate 
techniques.

Some of the advantages and challenges of applying sta-
tistical methods based on extreme value theory to analyze 
non-stationary climate extremes have been pointed out 
previously (e.g., Katz 2010), but are still not necessarily 
well appreciated by the climate science community. Con-
ventional approaches tend to be either: (1) less informa-
tive (e.g., analyzing only the frequency of exceeding a high 
threshold, not the excess over the threshold and not meas-
uring the intensity of the event); or (2) less realistic (e.g., 
based on assumed distributions such as the normal that 
may fit the overall data well, but not necessarily the tails). 
When relating extremes to LSMPs, standard regression 
approaches would not quantify the uncertainty in the rela-
tionship as realistically as using extremal distributions with 
covariates. Challenges in extreme value methods include 
specifying the dependence on LSMPs of the parameters of 
the extremal distributions in a manner consistent with our 
dynamical understanding. Moreover, heat waves and CAOs 
are relatively complex forms of extreme events, some of 
whose characteristics can be challenging to incorporate 
into the framework of extreme value statistics (Furrer et al. 
2010). Finally, another advantage of the POT approach 
over the block maxima approach is being able to incorpo-
rate daily indices of LSMPs as covariates (not just monthly 
or seasonally aggregated indices).

2.3  Identification of LSMPs related to extreme 
temperatures

Several methods have been used to identify LSMPs that 
occur in association with extreme temperature events. 
These methods and their properties are summarized in 

Table 2. The text summarizes each method, its advantages 
and its disadvantages.

2.3.1  Composites

Composite methods define the LSMP using a target ensem-
ble average. The values at a grid point for a field on speci-
fied ‘target’ dates are averaged together. These dates might 
be when a temperature event begins (onset dates) defined 
as when some parameter(s) first meet some threshold and 
duration criteria. Table 3 illustrates various threshold and 
duration criteria that have been used to identify short-term 
extremely hot events. The different definitions yield some-
what different dates and results. A definition using a physi-
ological hazard (Robinson 2001) might not be satisfied at 
night in the coastal and some inland regions of the West, 
even though the daytime temperature threshold is well 
exceeded. Lower thresholds (90th percentile) generate more 
events thus increasing the sample size that can improve the 
statistical fit, though the behavior of the highest 1 % may 
not be well fit. Similarly, the number of stations (or the size 
of the area over which those stations occur) impacts which 
dates are identified, even for regions that would seem to 
be meteorologically consistent; for example, which sta-
tions and how many are included from the Central Valley 
of California changes which dates exceed a threshold. Also, 
different definitions target different purposes: Grotjahn and 
Faure were interested in the LSMPs at the onset of the hot-
test events while Meehl and Tebaldi were interested in find-
ing the longest duration events of some importance. The 
number of dates averaged equals the number of ensemble 
members.

Compositing has several advantages. One can track 
LSMP formation by compositing fields with respect to the 
onset time of each event. Meteorologically relevant full 
fields (or anomalies) are obtained and composite analyses 
are constructed to obtain information on the synoptic and 
dynamical time evolution. The method is non-parametric in 
that it does not make any assumption about the pattern or 
the event statistics. Unlike some other methods, criteria can 
be applied (typically a minimum waiting period between 
events) to ensure events are independent. Significance can 
be assessed using a bootstrap resampling procedure where 
the target ensemble value at a grid point is compared to the 
distribution of values at that grid point found from a large 
number of ‘random ensembles’ (each of which uses the 
same number but randomly-chosen dates). Values above 
(or below) a threshold of the random ensemble distribution 
imply significantly high (low) values at that grid point. For 
example, a target ensemble value equal or higher than the 
top 10 of 1000 random ensemble values at that point is sig-
nificant at approximately the 99 % level. Figure 2 shows 
the LSMPs for California Central Valley cold air outbreaks 
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and heat waves obtained by this method, including boot-
strap resampling significance.

Compositing has some disadvantages that can be 
addressed. The identification of the extreme event dates 
must be done separately and before the compositing. The 
composite produces one target ensemble average (for a 
specific field and level) for each set of target dates. If 
more than one LSMP can produce the extreme event, 
then that must be identified either with one or more 
additional criteria when choosing dates or identified by 

examining (perhaps qualitatively) the maps for each indi-
vidual member of the target ensemble. A procedure like 
adding the number of positive and subtracting the num-
ber of negative anomaly values at a grid point in the tar-
get ensemble members (called the ‘sign count’ in Grot-
jahn 2011) can assist with identifying multiple patterns. 
(If the sign count equals the number of ensemble mem-
bers, then all members have the same sign of the anomaly 
field at that location.) Lee and Grotjahn (2015) apply a 
cluster analysis to distinctly different parts of LSMPs 

Table 3  Sampling of Various 
Criteria Used in Heat Wave and 
Hottest Day Definitions

Source Definition

Robinson (2001) A period of at least 48 h during which neither the overnight low nor the 
daytime heat index Hi falls below the NWS heat stress thresholds (80 and 
105 °F). At stations where more than 1 % of both the high and low Hi 
observations exceed these thresholds, the 1 % values are used as the heat 
wave thresholds

Hajat et al. (2002) 3-day moving average temperatures >the 99th percentile of the whole record 
of temperature

Meehl and Tebaldi (2004) The longest period of consecutive days satisfying the following 3 conditions
1. Daily maximum temperature >T1 for at least 3 days
2. Average daily maximum temperature >T1 for entire period
3. Daily maximum temperature >T2 for every day of entire period,
where
T1 (threshold 1) = 97.5th percentile of distribution of maximum temperatures 

in the observations and in simulated present day climate
T2 = 81st percentile

Beniston (2004) Maximum T exceeding the 90th quantile of summer temperature (30 °C) at a 
station (Basil, Switzerland)

Lipton et al. (2005) Daily maximum high temperature remains 2 standard deviations above normal 
for at least 2 consecutive days

Gosling et al. (2007) For 3 or more days the maximum T must be ≥95th percentile of the maxi-
mum T in the summer climatology

Grotjahn and Faure (2008) At least 3 consecutive days during which the daily maximum temperatures are 
above 100 °F (38 °C), and with at least one above 105 °F (40.5 °C)

Bachmann (2008) Two combinations of criteria, I and II, were tested
I. Must satisfy both conditions (where anomaly is relative to long term daily 

mean):
1. At least 3 consecutive days with daily anomaly maximum temperature 
≥10 °C

2. At least 1 day must have maximum temperature anomaly ≥15 °C
II. Must satisfy the 2 conditions above plus this additional condition:
3. The average maximum temperature for the event ≥100 F (38 °C)

Gershunov et al. (2009) Individual stations exceeding the 99th percentile for 1, 2, or 3 dates in a 
row are aggregated, with the highest aggregation of values over the region 
including all of California and Nevada determining a ranking for an event. 
Daytime maximum and nighttime (highest) minimum treated separately

Lyon (2009) Daily maximum temperature must exceed the 90th percentile for at least 
3 consecutive days, where the percentile is based daily values from the 
3-month summer season. Also tested, same temperature criterion over 5 
consecutive days

Grotjahn (2011) Daily maximum temperature anomaly (relative to long term daily mean) nor-
malized by daily long term mean standard deviation at all three CV stations 
(KRBL, KFAT, KBFL) must all exceed 1.6 Note: this defines hottest days, 
not heat waves

Bumbaco et al. (2013) Daily maximum temperature anomalies for stations in a region are averaged 
together. Heat wave when regional average daily anomaly exceeds 99th 
percentile for 3 or more consecutive days
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prior to California heat waves and identify two ways the 
onset LSMPs form.

2.3.2  Regression

Regression estimates one quantity (the predictand) using 
a function of one or more other quantities (the predictors). 
The method is often parametric in assuming a specific func-
tion relates a predictor to the predictand (but nonparametric 
methods exist, too). An example predictor might be daily 
minimum surface temperature and the predictand might 
be 700 hPa level meridional wind. At each grid point the 
value of the predictand can be estimated using a polyno-
mial function of the predictor, where the coefficients of that 
polynomial are calculated to minimize a squared difference 
between actual predictand values and polynomial values at 
that grid point. In general, the coefficients differ from grid 
point to grid point. To find the LSMP in this example of 

extreme cold events, the polynomial can be used to con-
struct the predictand at each grid point using a predictor 
value such as two standard deviations below normal.

The pattern obtained by regression can provide physical 
insights by directly linking the patterns in the predictand to 
extremes in the predictor. For example, lower tropospheric 
(700 hPa) winds prior to a California CAO flow from 
northern Alaska and northern western Canada to reach Cal-
ifornia without crossing over the Pacific Ocean. Regression 
can be used to examine patterns leading up to (or after) 
event onset dates by offsetting in time the predictor values 
from the predictand values when calculating the regression 
coefficients. The LSMP is again the resultant predictand 
when the predictor is at some specified value (e.g. predictor 
equals two standard deviations below normal). Significance 
can be estimated by rejecting a null hypothesis (e.g. that 
the regression coefficient is zero at the 1 % level using a 
student’s t test).

Fig. 2  Example large scale meteorological patterns (LSMPs) 
obtained as target ensemble mean composites for two types of Cali-
fornia Central valley extreme events. Cold air outbreaks in winter 
(DJF) at a 72 h prior and b at onset of the events are shown in the 
500 hPa geopotential height field. Heat waves during summer (JJAS), 

c 36 h prior and d at the onset are shown in the 700 hPa geopotential 
height field. Shading indicates significance at the highest or lowest 
5 % level, with the innermost shading significant at the 1.5 % level. 
Further discussion is in Grotjahn and Faure (2008)
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One disadvantage of regression is that the assumption of 
a specific polynomial to represent how the predictand var-
ies relative to the predictor. The fit of the regression line 
(polynomial) to extreme values may be notably altered by 
the order of the polynomial assumed. Regression, like com-
posites, only finds one pattern. Regression does not incor-
porate event duration criteria (such as: the event must last 
at least 3 days). Regression treats all dates as independent, 
which they are not likely to be; however this can be some-
what mitigated by sub-sampling the data (e.g. only use 
every fifth day). Subsampling might be combined with low 
pass filtering to aggregate the mixture of onset and during-
event dates. Another disadvantage is that a portion of the 
pattern may be highly significant but only have small cor-
relation to the predictor.

2.3.3  Empirical orthogonal functions

Empirical orthogonal functions (EOFs) or principal com-
ponents (PCs) can be used to identify LSMPs for extreme 
events. EOFs are the eigenfunctions of a matrix formed 
from the covariance between grid points on maps. EOFs 
from all maps in a time record will be ordered based on 
the eigenfunctions responsible for the largest amount of 
variance between time samples. Such eigenfunctions are 
the most common modes of variability and so not likely to 
be LSMPs of extreme events that are rare (except as men-
tioned in the introduction). However, EOFs can be formed 
only from maps selected in reference to an extreme event, 
such as maps only on the target dates of events onset. 
(EOFs of common low frequency modes may influence 
short-term extreme events focused on in this paper, as dis-
cussed in Sect. 3.1.) Weighting can be used for a variable 
grid spacing (such as occurs when using equal intervals of 
longitude across a range of latitudes).

An advantage of EOFs/PCs is the method finds multi-
ple patterns, each of which is orthogonal (not a subset) of 
another pattern. The method can calculate the fraction of 
variability that is due to each EOF/PC. This approach is 
most often used with filtered data to find low frequency 
structures. This method is suitable for finding patterns lead-
ing up to and after the event by shifting the dates chosen by 
the event criteria (and only using those dates). In a study of 
California Central Valley hot spells, Grotjahn (2011) found 
the leading EOF based on dates satisfying the criteria in 
Table 3 to be very similar to the corresponding ensemble 
mean composite.

A disadvantage is that the patterns found may depend on 
the domain chosen, though EOF ‘rotation’ may help. Also, 
each EOF may explain only a small fraction of the variance 
and no single EOF might be an LSMP thereby limiting 
physical insight. Different leading EOFs/PCs might have 
structures influenced by the required orthogonality and 

possibly not a pattern that occurs during an event. While 
the amount of variance associated with a given EOF is used 
to indicate the importance of the EOF, there is no inherent 
statistical significance test. Hence it can be unclear what 
portions of the EOF are significantly associated with the 
extreme event and what parts are not (and happen to reflect 
limited variation in the finite sample).

2.3.4  Clustering analysis

Clustering analysis is terminology indicating a widely 
used partitioning procedure that identifies separate groups 
of objects having common structural elements. Clustering 
analysis has been used to classify distinct sets of LSMPs 
associated with extreme events (Park et al. 2011; Stepha-
non et al. 2012). When we have 100 historical hot spell 
events over a given region, not all extreme events may have 
the same LSMP on or prior to their onset. Some events may 
have a wave-like height field, others may have a dipole pat-
tern, and still others may have a third pattern. Although 
detailed grouping procedures vary for every clustering 
technique, the basic concept is to minimize the overall dis-
tance between patterns among events in resultant groups. 
For example, the k-means clustering technique applies an 
iterative algorithm in which events are moved from one 
group to another until there is no additional improvement 
in minimizing the squared Euclidean point-to-centroid dis-
tance in a group (Spath 1985; Seber 2008), where each cen-
troid is the mean of the patterns in its cluster.

Output of clustering analysis is just the average field of 
events in each cluster, similar to the output from composite 
analysis. Unlike composite analysis in which members of 
clusters are pre-identified, the essential point of clustering 
analysis is to objectively classify events based on spatial 
pattern similarity. By applying cluster analysis to group 
similar onset patterns, one can isolate distinct dynamical 
origins of different extreme temperature events. Another 
advantage is that resultant clusters are based on physical 
maps without assumptions of orthogonality and symmetry 
such as in the mode separation by EOF/REOF. The robust-
ness of a hot spell classification can be tested by a Monte 
Carlo test as follows. First one calculates a stability score 
that is the ratio of the number of verification period heat 
waves that are correctly attributed over the total number 
heat waves in the cluster. Second one estimates the prob-
ability density function (PDeF) of the null hypothesis that 
cluster assignment is purely random. Significance of each 
cluster can be estimated by rejecting a null hypothesis (e.g. 
stability score is located within highest 99 % of PDeF).

A disadvantage of clustering analysis is that one pre-
specifies the number of clusters (e.g. k in k-means cluster-
ing). Determining the number k is subjective if one does 
not have sufficient prior knowledge of related physical 
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patterns. There are several statistics to check the optimal 
number of k such as ‘distance of dissimilarity’ (Stephanon 
et al. 2012). Another disadvantage is the ambiguity of clus-
ter assignment for certain events. Another disadvantage is 
the patterns of such events cannot be assigned clearly to 
one group over another group. Part of a pattern may resem-
ble Cluster #1, while another part may be more similar to 
Cluster #2. To avoid ascribing some marginal events to spe-
cific clusters, probabilistic clustering methods (e.g. Smyth 
et al. 1999) are developed, which suggests the possibility 
(e.g. percentage) that an event could be assigned to each 
cluster rather than assigning it only to one cluster. If one 
increases the cluster number, one can expect to decrease 
such ambiguity in classification. However, the point of 
clustering analysis is to give a physical insight with mini-
mal groups and not to interpret every single episode.

2.3.5  Self‑organizing maps

Self-organizing maps (SOMs; Kohonen 1995) are two-
dimensional arrays of maps that display characteristic 
behavior patterns of a field (e.g., Cavazos 2000; Hewit-
son and Crane 2006; Gutowski et al. 2004; Cassano et al. 
2007). The SOM array is a discretization of the continuous 

pattern space occupied by the field examined. Thus, in con-
trast to clustering analysis, SOMs do not assume a clump-
ing together of patterns, though such behavior can emerge 
if present in the input data. Figure 3 gives an example of a 
SOM array of synoptic weather patterns in sea level pres-
sure over a region centered on Alaska. Individual maps in 
the array represent nodes in a projection of this continuous 
space onto a two-dimensional surface, with the size of the 
array determined by the degree of spatial discretization of 
the SOM space one “feels” is needed for the analysis at 
hand. The two dimensions show the two primary pattern 
transitions for the field examined. Although one could, in 
principle, use more than two dimensions, typical practice in 
climatological work has used only two.

The input maps themselves determine the degree and 
types of pattern transitions, hence the “self-organizing” 
nature of the resulting array. The SOM node array is 
trained on a sequence of input maps through an artificial 
neural net technique. The SOM array does not necessar-
ily favor the largest scales in the input data, but rather the 
scales most relevant to the field for the domain and reso-
lution examined. Consequently, SOMs can extract nonlin-
ear pattern changes in fields, such as shifts in strong gra-
dients. In addition, the pattern at each node is essentially 

Fig. 3  Self-organizing map of synoptic weather patterns in a region 
focused on Alaska. The SOM array maps give the departure (in hPa) 
of sea level pressure (SLP) from the domain averaged sea level pres-
sure. The SOM used daily December–January–February (DJF) SLP 

for 1997–2007 from ERA-interim reanalyses and output from a 
regional climate model. Locations with elevation exceeding 500 m 
are not included in the maps to avoid using SLP in regions strongly 
influenced by methods used to extrapolate SLP from surface pressure
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a composite of input maps with similar spatial distribution 
for the field examined, so that patterns in the SOM array 
show archetypal patterns of the field examined and directly 
lend themselves to physical interpretation. Typically, the 
SOM array displays features having the highest temporal 
variance in the input data. From this perspective, the SOM 
array is roughly akin to a transformation of a rotated EOF 
from spectral space back to physical space.

An advantage of SOMs is that one can identify the 
nodes where extreme events occur frequently and thus the 
physical behavior yielding extremes. For example, extreme 
events may tend to cluster in a small portion of SOM space, 
thereby allowing identification of LSMPs yielding extreme 
events. A further advantage is that if more than one group 
emerges in the SOM-space frequency distribution, then the 
grouping provides a SOM-determined segregation of dif-
ferent types of extreme events. One can then focus analy-
sis and composites of additional fields (e.g., precipitation, 
winds, temperature) on only events of the same type. For 
example, Cassano et al. (2006) used SOMs of sea-level 
pressure patterns over Alaska to determine which synoptic 
weather patterns were responsible for extreme wind and 
temperature events at Barrow, Alaska. They then found 
robust links between these large-scale synoptic weather 
patterns and local weather features (precipitation, winds, 
and temperature). One can construct estimates of the sig-
nificance of differences in frequency distributions in SOM 
space through bootstrapping procedures to estimate the 
likelihood that frequency distributions are not simply the 
result of random, finite sampling of the pattern space. Thus 
one can compare frequency distributions between a present 
and projected climate to assess potential climate changes 
in LSMPs, or between observational and model climates to 
assess similarity of observed and simulated LSMPs yield-
ing extremes.

A disadvantage of SOMs is that the array size is pre-
determined by the user, and there is no clear, objective 
guideline for selecting array size. There are, however, some 
factors that can affect the array-size choice. The issue of 
significance limits the degree of discretization (number of 
nodes) one applies to the SOM space. Fine discretization 
will allow apparent detection of small differences in how 
different data sets occupy pattern space, but fine discre-
tization will also render very noisy frequency distribution 
functions of the fields in SOM space, thus undermining 
detection of any significant differences. Coarse discretiza-
tion limits the ability of the SOM procedure to resolve fea-
tures producing the extreme events, so a further disadvan-
tage is that an insufficient array size may obscure grouping 
that may be present in the data. The training method also 
requires specification of parameters that govern the training 
process. A well-trained SOM is insensitive to these choices, 
but care is needed to ensure such a result. In addition, like 

some of the other methods described here, the extreme 
events are defined separately from the SOM analysis.

2.3.6  Machine learning and other advanced techniques

Looking to the future, we note that substantial progress 
has been made in the field of machine learning for extract-
ing patterns from Big Data. Commercial organizations 
such as Google and Facebook rely on sophisticated, scal-
able analytics techniques for mining web-scale datasets. 
Both supervised and unsupervised machine learning tools 
could play an important role in extracting spatio-temporal 
patterns from climate datasets. The technique Deep Belief 
Networks (Salakhutdinov and Hinton 2012) has been 
applied with tremendous success to classifying objects in 
digital images (Krizhevsky et al. 2012) and speech recogni-
tion (Hinton et al. 2012). These methods have substantially 
outperformed existing techniques in the field with the same 
underlying learning algorithm. While these techniques have 
not yet been adapted for a multivariate spatio-temporal 
dataset (such as in climate), research efforts are currently 
underway to evaluate the performance of such methods in 
extracting patterns as well as anomalies from datasets. It is 
too early to discern pros and cons fully for such methods.

2.4  Including large scale patterns in extreme statistics

Application of covariates in extreme value methods (termed 
“conditional extreme value analysis”) is relatively new to 
the climate science community, although it has been avail-
able to the larger statistics community for some time (Coles 
2001). The basic idea of conditional extreme value analy-
sis is to allow the extremal distribution to be dynamic; that 
is, shifting depending on the observed value of an index of 
a climate mode or LSMP (the index would be an example 
of a “covariate”). The book by Coles includes an example 
in which annual maximum sea level is related to a climate 
mode, the Southern Oscillation. In their study of changes 
in extreme daily temperatures, Brown et al. (2008) used the 
NAO as a covariate in addition to a trend component.

Such techniques have proven useful in connecting 
extreme temperatures to LSMPs. Sillmann and Croci-
Maspoli (2009) and Sillmann et al. (2011) used a blocking 
index as a covariate for extremely cold European winter 
temperatures and found that extreme value distributions 
(based on block minima) were better fit and long period 
return values were somewhat colder. Furthermore, they 
concluded that projected future extremely cold events 
in Europe were less influenced by atmospheric block-
ing because of projected shifts in North Atlantic blocking 
patterns. Photiadou et al. (2014) used a similar technique 
(but based on the POT approach rather than block max-
ima) to connect blocking and other indices to European 
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high temperature events finding that while El Nino/South-
ern Oscillation (ENSO) does not exert much influence on 
extremely high temperature magnitudes or duration, the 
North Atlantic Oscillation (NAO) and atmospheric block-
ing do. However to date, such covariate techniques relat-
ing atmospheric blocking to extreme temperatures have 
not been applied to North America. Many physically based 
covariate quantities potentially offer insight into the mecha-
nisms behind extreme temperature events and the response 
to changes in the average climate. Good North American 
candidates for covariates include indices measuring modes 
of natural variability such as those describing the ENSO, 
the Pacific Decadal Oscillation (PDO), the NAO, the North 
Atlantic Subtropical High (NASH), and various blocking 
indices.

The ETCCDI indices were designed for climate change 
detection and attribution purposes rather than for explor-
ing the mechanisms causing extreme events. They are not 
ideal for connecting extreme temperature events to LSMPs 
and they are not descriptive of particularly rare events. 
However, ETCCDI indices are designed to be robust over 
the observational record and have been calculated and 
described for CMIP5 models by Sillmann et al. (2013a) 
(see Table 1). ETCCDI indices are intended to be applied 
globally and be meaningful in areas of sparse observations. 
The relatively dense network of North American observa-
tions since the beginning of the twentieth century permits 
the construction of more specialized LSMP extreme indices 
linked to specific extreme events. Grotjahn (2011) defines 
an index that is an unnormalized projection of key parts 
of a target ensemble LSMP onto a daily map of the cor-
responding variable. (He combined such projections onto 
850 hPa temperature and 700 hPa meridional wind to form 
his ‘circulation index’.) His target ensemble members are 
from dates satisfying criteria listed in Table 3. The key parts 
of the fields used are those where all the extreme events in 
the training period were consistent, at least in having the 
same anomaly sign. Grotjahn (2011) found that extreme 
values of such an index (based on upper air data) occurred 
on many of the same dates as extreme values of surface sta-
tions in the California Central Valley (CCV). Statistically 
significant relationships exist between extreme values of 
this circulation index and both the rate of CCV daily maxi-
mum temperature exceeding a high threshold and the distri-
bution of the excess over the threshold (Katz and Grotjahn 
2014). Grotjahn (2013) used such an index to show that a 
particular climate model was notably under-predicting the 
occurrence frequency (by half) of CCV hot spells. Grotjahn 
(2015) used such an index to show how that same model 
compared with a 55 year historical record and what the 
model implied for CCV hot spells during the last half of the 
twentyfirst century under two representative concentration 
pathways (RCPs) of greenhouse gases.

3  Large scale meteorological patterns related 
to extreme temperature events

Intraseasonal extreme temperature events (ETEs) are 
almost always associated with regional air mass excursions 
induced by circulation anomalies that are part of large-scale 
meteorological patterns (LSMPs). LSMPs can include syn-
optic features (e.g., midlatitude cyclones; Konrad 1996) 
that enhance the ETE and often with scales similar to a tel-
econnection pattern (though the nodes may not align and 
ETE onset, itself, may impact the teleconnection pattern, 
Cellitti et al. 2006). In some cases, the LSMP is interpreted 
as a juxtaposition of teleconnection patterns that leads to 
ETE events (Lim and Kim 2013). Heuristically, the role of 
LSMPs in producing ETEs could be considered the result 
of either (1) a direct contribution to the large-scale circula-
tion that facilitates the air mass excursion or (2) the indi-
rect modulation of sub-scale variability, such as regional 
modulation of storm track behavior by blocking patterns. 
Besides such dynamically driven impacts, there exist pos-
sible local impacts related to the interaction of the LSMP 
with local topography or coastline features, leading to pos-
sible local symmetries in the response pattern (e.g., Loikith 
and Broccoli 2012). Current knowledge of the remote forc-
ing, dynamics and local forcing of LSMPs associated with 
ETEs is summarized next.

3.1  Remote forcing of LSMPs and ETEs

3.1.1  Connection to low frequency modes of climate 
variability

Numerous observational studies have ascertained that ETE 
behavior is modulated by recurring large scale telecon-
nection patterns, particularly during winter. On intrasea-
sonal time scales there is a substantial modulation of North 
American ETEs during winter by the Pacific-North Ameri-
can (PNA) pattern, North Atlantic (or Arctic) Oscillation 
(NAO or AO) and blocking patterns (Walsh et al. 2001; 
Cellitti et al. 2006; Guirguis et al. 2011). On interannual 
and longer time scales additional climate modes such as El 
Nino-Southern Oscillation (ENSO) and the Pacific Decadal 
Oscillation (PDO) are also implicated (Westby et al. 2013). 
General relationships that have emerged from these statisti-
cal analyses are illustrated in Fig. 4: The positive (negative) 
phase of the NAO favors the occurrence of warm (cold) 
events over the eastern (southeastern) United States. The 
positive (negative) phase of the PNA tends to favor cold 
events over the southeastern (northwestern) US. These con-
nections to climate modes are neither unique nor independ-
ent. For example, the regional influence of the PNA pattern 
on ETEs largely mirrors that of both the PDO and ENSO 
(Fig. 4) since the midlatitude atmospheric signatures of 
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both ENSO and the PDO project on the PNA pattern. Also, 
the prevalence of atmospheric blocking patterns is intrin-
sically linked to particular climate mode phases (Renwick 
and Wallace 1996).

There have been pronounced episodes of climate modes 
influencing ETEs during recent winters. Cold extremes 
over Europe and the southeastern United States during 
recent winters (2009–2010 and 2010–2011) were primar-
ily accounted for by the anomalous blocking associated 
with persistent episodes of large amplitude negative phase 
of the NAO (Guirguis et al. 2011). There is also evidence 
of an important role for stationary Rossby wave patterns 
in contributing to North American temperature extremes 
during summer (Schubert et al. 2011; Wu et al. 2012). 
These wave patterns appear to arise from internal forcing 

associated with intraseasonal transient eddies (Schubert 
et al. 2011).

As discussed above, two more commonly recognized 
remote influences upon North American ETEs are associ-
ated with ENSO and the PDO (e.g., Westby et al. 2013), 
both involving local sea surface temperature anomalies 
and atmosphere–ocean coupling. These generally operate 
in conjunction with PNA-like teleconnection patterns that 
extend from the coupling region downstream into North 
America. Similar to the effect of climate modes, the impact 
of remote forcing upon warm season ETEs is partly lim-
ited by the relative inactivity and spatial extent of climate 
modes, which serve as horizontal pathways for Rossby 
wave energy between the remote forcing region and the 
local surface response (Schubert et al. 2011).

Fig. 4  Correlation between the local seasonal impact of cold days 
(left column) and warm days (right column) and the seasonal mean 
NAO (first row), PNA (second row), PDO (third row) and Niño 3.4 

indices (fourth row) during winter, 1950–2011. The black contours 
encompass regions having correlations statistically significant at the 
95 % confidence level (figure from Westby et al. 2013)
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3.1.2  Connection to sea ice and snow cover

The atmospheric response to the Arctic sea ice reduction 
is thought to be Arctic warming and destabilization of the 
lower troposphere, increased cloudiness, and weakening of 
the poleward thickness gradient and polar jet stream (Fran-
cis et al. 2009; Outten and Esau 2012). As the Arctic warms 
faster than lower latitudes (so-called Arctic Amplification), 
the meridional temperature gradient at higher latitudes is 
likely to weaken altering the polar jet stream according 
to thermal wind balance. Changes in the high latitude jet 
stream in turn have the potential to impact weather con-
ditions at middle and high latitudes. For example, during 
winter an enhanced westerly jet over the North Atlantic can 
help maintain relatively mild conditions over northwest 
Europe via heat transport from the Atlantic. Cohen et al. 
(2014) review three “pathways” by which Arctic amplifica-
tion may impact extreme weather events in mid-latitudes. 
In principle, Arctic amplification may lead to regional 
alterations in the structure of storm tracks, jet streams and 
planetary waves. In recent years, considerable attention has 
been focused on the role of Arctic amplification-induced 
changes to the jet stream (Francis and Vavrus 2012; Liu 
et al. 2012; Barnes 2013; Screen and Simmonds 2013). 
Francis and Vavrus (2012) found that a weaker zonal flow 
(i.e., polar jet) from weakened meridional temperature 
gradient slows the eastward Rossby wave progression and 
tends to create larger meridional excursions of height con-
tours and associated temperature displacements resulting in 
a higher probability of extreme weather. In a similar vein, 
Liu et al. (2012) argue that the circulation change due to 
the decline of Arctic sea ice leads to more frequent events 
of atmospheric blocking that cause severe cold surges over 
large parts of northern continents. Francis et al. (2009), 
Overland and Wang (2010), Jaiser et al. (2012) and Lim 
et al. (2012) found that there is a delayed atmospheric 
response to the Arctic sea ice. Specifically, the Arctic sea 
ice extent in summer to fall influences the atmospheric cir-
culation in the following winter over the northern mid- to 
high-latitudes, affecting the seasonal winter temperature 
and subseasonal warm/cold spells. Evidence presented in 
more recent studies (Barnes 2013; Screen and Simmonds 
2013), however, suggests that the role of the mechanism 
put forth by Francis and Vavrus (2012) is uncertain at best. 
More generally, Cohen et al. (2014) conclude that our 
understanding of the mechanistic link between ongoing 
Arctic amplification and mid-latitude extreme weather is 
currently limited by shortcomings in relevant data records, 
physical models and dynamical understanding, itself. As 
such, the likely future impact of Arctic amplification upon 
extreme weather is highly uncertain.

Arctic amplification is also linked to long-term vari-
ability in high latitude snow cover. An analogous linkage 

between autumnal variability in Eurasian snow cover and 
wintertime ETE events over North America has been noted 
(Cohen and Jones 2011). In this case, autumnal snow cover 
anomalies induce a subsequent weakening of the strato-
spheric polar vortex during winter which, in turn, leads 
to a persistent negative phase episode of the tropospheric 
AO favoring North American cold events (Cohen et al. 
2007). In addition, there is evidence that the changing Arc-
tic sea ice extent may be linked to changes in the autum-
nal advance in Eurasian snow cover (Cohen et al. 2013). 
As for Arctic amplification, however, there is considerable 
uncertainty regarding the statistical robustness and physi-
cal nature of the Eurasian snow cover influence upon mid-
latitude extreme weather (Peings et al. 2013; Cohen et al. 
2014).

3.1.3  Large‑scale climate “markers” for climate model 
assessment

Representation of fundamental climate modes One obvious 
essential minimum requirement for climate models to prop-
erly represent the modulation of ETEs by climate modes 
is the extent to which the models are able to represent the 
primary climate modes, themselves. Thus, fundamental 
markers for model assessment are metrics that measure the 
representation of key extratropical climate modes including 
those internally forced on intraseasonal time scales (PNA, 
AO/NAO and atmospheric blocking) and those externally 
forced on longer time scales (the extratropical response to 
ENSO and the atmospheric part of the PDO). Atmospheric 
models have had historical difficulty in representing some 
types of intraseasonal low frequency variability (Black and 
Evans 1998). A particular problem is an under-representa-
tion of atmospheric blocking activity (Scaife et al. 2010). 
In a similar vein, the representation of externally forced 
extratropical modes connected to ENSO and PDO depends 
on how well the coupled climate models simulate the asso-
ciated oceanic phenomenological behavior.

The Coupled Model Intercomparison Project (CMIP) 
provides an ideal resource for assessing the ability of mod-
ern coupled climate models to represent the behavior of cli-
mate modes. A recent analysis of CMIP5 models indicates 
that while most models studied perform well in represent-
ing the basic aspects of the PNA pattern, a small subset of 
models have difficulty qualitatively replicating the NAO 
pattern (Lee and Black 2013; Table 4). Otherwise differ-
ences among model patterns consist of horizontal shifts or 
amplitude variations in the circulation anomaly pattern fea-
tures. CMIP5 models generally underestimate the regional 
frequency of winter blocking events while summertime 
blocking events occurring over the high latitude oceanic 
basins are typically overestimated (Masato et al. 2013). 
Conversely, Westby et al. (2013) found serious deficiencies 
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in the representation of the PDO by CMIP5 models with 
direct impacts upon the modulation of anomalous tempera-
ture regimes.

Regional flow parameters impacting remote dynamical 
communication The pathway between anomalous remote 
forcing and the regional circulation response involves sev-
eral distinct factors. For example, in the case of the extra-
tropical response to tropical heating anomalies, tropical 
divergent outflow interacts with subtropical vorticity gradi-
ents to produce a Rossby wave train that extends into the 
extratropics (Sardeshmukh and Hoskins 1988). The forced 
Rossby wave train can then dynamically interact with the 
background extratropical mean flow (such as barotropic 
deformation in the jet exit region) and the midlatitude 
storm tracks leading to a “net” large scale circulation pat-
tern extending from the tropics into the midlatitude region 
of interest (e.g., Franzke et al. 2011). The ability of cou-
pled climate models to accurately represent such pathways 
is dependent upon a concomitant representation of several 
regional atmospheric phenomena and circulation structures 
including:

1. The tropical large-scale circulation response to tropical 
diabatic heating

2. Upper tropospheric meridional vorticity gradients in 
the subtropics

3. Barotropic deformation structures in the jet exit regions
4. The structure and intraseasonal variability of the Atlan-

tic and Pacific storm tracks

The authors recommend that model validation activities 
concentrate upon the above features in order to uncover 
likely sources for existing model deficiencies in leading tel-
econnection patterns.

3.2  Dynamics of LSMPs

3.2.1  Diagnostic tools to study dynamics of LSMP onset/
decay

The onset and decay of LSMP structures linked to ETEs 
generally occur on relatively short time scales. As such, the 
range of dynamical forcing mechanisms that can directly 
account for LSMP time evolution is limited to internal 
atmospheric processes (given the relatively long time scales 
associated with boundary forcing). The atmospheric pro-
cesses affecting LSMP evolution can be local or remote. 
For example, local synoptic-scale cyclogenesis can usher in 
a regional Arctic air outbreak while a transient episode of 
the PNA teleconnection pattern can provide a remote down-
stream influence on North American extremes. In some 
cases it is an optimal juxtaposition of local and remote 
influences operating on multiple time scales that is required 
to produce an extreme event (e.g., Dole et al. 2014).

Most ETE events are associated with lateral air mass 
excursions, which are induced by large-scale circulation 
anomalies in the lower troposphere forming the LSMP 
(e.g., Loikith and Broccoli 2012). The anomalous circula-
tion serves as a “dynamical trigger” for ETE events. The 
delineation of LSMP dynamics is treated as a two-stage pro-
cess: First it is of interest to assess whether the main energy 
source(s) are local or remote. Once the energy source loca‑
tion is determined, the second stage is to assess the specific 
physical mechanism providing the proximate energy source 
in this location. An effective means for assessing the source 
location regions for large-scale atmospheric waves is the 
application of wave activity flux analyses (Plumb 1985; 
Takaya and Nakamura 2001). The wave activity flux is par-
allel to Rossby wave group velocity and traces out a three-
dimensional pathway between a wave source region (of flux 
divergence) and a wave sink region (of flux convergence).

Possible primary physical mechanisms providing wave 
activity sources in this context include large-scale barotropic 
growth, baroclinic growth/instability and nonlinear forcing 
by synoptic-scale eddies (Evans and Black 2003). These 
mechanisms may be augmented via secondary feedbacks 
related to internal diabatic processes or interactions of the 
LSMP with the local topography or land surface. Past stud-
ies have introduced comprehensive dynamical frameworks 

Table 4  Correlation coefficients between the loading pattern of 
observation and that of each CMIP5 model for NAO-like and PNA-
like modes

Right-most column includes the averaged coefficients of two modes. 
Bold values denote high-top models and italic values denote low-top 
models (reproduced from Lee and Black 2013)

Model NAO PNA Mean

GFDL-ESM2G 0.94 0.93 0.93

MPI-ESM-LR 0.83 0.92 0.88

HadCM3 0.90 0.82 0.86

CSIRO-Mk3-6-0 0.85 0.81 0.83

CCSM4 0.71 0.91 0.81

CanESM2 0.73 0.83 0.78

CNRM-CM5 0.78 0.77 0.78

MIROC-ESM-CHEM 0.73 0.78 0.75

inmcm4 0.72 0.76 0.74

NorESM1-M 0.56 0.91 0.73

IPSL-CM5A-MR 0.61 0.84 0.73

MIROC5 0.68 0.77 0.73

HadGEM2-CC 0.74 0.70 0.72

MIROC-ESM 0.72 0.70 0.71

IPSL-CM5A-LR 0.48 0.88 0.68

MRI-CGCM3 0.49 0.87 0.68

0.72 0.83 0.77
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for studying the dynamical mechanisms leading to the 
growth and decay of large-scale circulation anomalies (e.g., 
Feldstein 2002, 2003). These are based upon a local analy-
sis of tendencies in either the geopotential (Evans and Black 
2003) or streamfunction (Feldstein 2002) fields. In these 
studies local tendencies are decomposed into separate forc-
ing terms that can be related to distinct physical processes. 
The two-stage process outlined above is a generally useful 
means for the dynamical diagnosis of LSMP life cycles in 
both observations and climate model simulations.

3.2.2  North American Arctic air mass formation

Both dynamics and thermodynamics have roles in the for-
mation of extreme cold-air masses. Wexler (1936, 1937) 
postulated that the cold air was formed at the surface by 
radiative cooling from a snow-covered ground under clear, 
windless conditions, creating an intense temperature inver-
sion restricted to a very shallow layer at the surface. Find-
ing that the Wexler model could not adequately explain the 
depth of the cold layer observed in soundings, Gotaas and 
Benson (1965) showed that the existence of suspended ice 
crystals were crucial to upper-level cooling. Curry (1983) 
later modeled the effect with the introduction of conden-
sate, particularly ice-crystals, in the layer. In an experiment 
without moisture, the inversion that formed after 2 weeks 
of radiative cooling was less than 1000 meters deep. Only 
with the addition of ice crystals did the inversion rise above 
900 hPa. More recently, Emanuel (2009) found that the 
rates and depth of cooling in his model were sensitive to 
the amount of water vapor and clouds present.

Turner and Gyakum (2011), in their composite study of 
93 Arctic air mass formations in Northwest Canada, found 
that the cold air mass lifecycle is a multi-stage set of pro-
cesses. During the first stage, snow falls into a layer of 
unsaturated air in the lee of the Rockies, causing moisture 
increases in the sub-cloud layer. Simultaneously, the mid-
troposphere is cooled by cloud-top radiation. On the sec-
ond day, snowfall abates, the air column dries and clear-sky 
surface radiational cooling prevails, augmented by the high 
emissivity of fresh snow cover. The surface temperature 
falls very rapidly, as quickly as 18 °C day−1. On the third 
day, after near-surface temperatures fall below their frost 
point, ice crystals and, nearer the surface, ice fog form. At 
the end of formation, there is cold-air damming (Forbes 
et al. 1987; Fritsch et al. 1992), with a cold pool and anticy-
clone in the lee of the Rockies, lower pressure in the Gulf 
of Alaska and an intense baroclinic zone oriented northwest 
to southeast along the mountains.

Figure 5 shows an event having extremely cold surface 
temperatures and unusual duration (17 days, compared 
with Turner et al., 2013, 93-case mean of 5 days). SLP 
anomalies tend to be higher near the coldest air, but are 

not extreme during this 5-day formation period. More to 
the point, the rapid 1000–500 hPa cooling of ≥10 °C (≥20 
dam) over northwestern Canada is noteworthy. Surface 
ridging that builds southeastward along the eastern slopes 
of the Rockies, particularly during 31 January and 1 Feb-
ruary, facilitates cold-air damming and areal expansion of 
anomalously cold air southward to the US-Canada border. 
Turner et al. (2013) invoke diabatic cooling to explain the 
observed cooling during this formation period. This cool-
ing may consist of sublimational cooling from precipita-
tion falling into a dry layer and radiational cooling from 
suspended ice crystals. Turner et al. cite empirical evidence 
that much of the surface weather in this region and period 
includes snowfall, ice crystals, and ice fog.

3.2.3  CONUS wintertime cold air outbreaks

Cold air outbreaks over North America typically consist 
of a two-stage process: the first stage is the formation of 

Fig. 5  Sea-level pressure anomalies (solid/dashed contour interval of 
4 hPa indicating positive/negative values) and 1000–500 hPa thick-
ness anomalies (shaded, dam) at 1200 UTC during the arctic air mass 
formation period of 27 January 1979 through 1 February 1979. The 
Norman Wells, NWT rawinsonde station is indicated by the star; by 8 
February the temperature there reaches −48.1 °C. The climatological 
reference period is 1970–2000
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an Arctic air mass surface anticyclone at higher latitudes 
over Canada. This is followed by the rapid horizontal trans-
port of the air mass to lower latitudes. The latter stage is 
enabled by the lower-tropospheric circulation anomaly 
embedded within LSMPs. North American cold air out-
breaks are typically associated with a 500 hPa geopoten-
tial height anomaly pattern consisting of a broad region 
of negative anomalies over the CAO region, itself, along 
with a positive anomaly feature located to the northwest. 
This is illustrated in Fig. 6 (panels Jan Tx5 and Jan Tn5), 
which displays horizontally phase-shifted composites of 
the tropospheric circulation anomalies associated with local 
temperature extremes over North America (noting that the 
so-called “grand composite” patterns encompass a circu-
lar domain with a radius of 4500 km). This 500 hPa dipole 
structure is linked to a positive sea level pressure anomaly 
feature that extends between the upper level features along 
with a considerably weaker negative SLP anomaly located 
to the southeast. Thus, the CAO events are linked to a 
near-surface northerly flow embedded within a northwest-
ward tilting anticyclonic circulation anomaly. Loikith and 
Broccoli observe that although these circulation anomaly 
patterns resemble large-scale teleconnection patterns, the 
inherent spatial length scale is closer to synoptic scale. This 
illustrates the importance of local synoptic features in the 
life cycles of ETE events. On the other hand, recent papers 
by Westby et al. (2013) and Loikith and Broccoli (2014) 

demonstrate an additional statistically significant modula-
tion of ETEs by larger-scale teleconnection patterns.

West coast events (e.g., CA Central Valley events) Com-
pared with cold air outbreaks affecting the eastern and cen-
tral parts of the US, less has been written about outbreaks 
affecting the western US. Extreme cold over California is 
related to a large scale pattern that brings cold air from the 
Arctic and northern Canada without crossing the Pacific, 
and hence over the Rocky Mountains (Grotjahn and Faure 
2008). As discussed in Grotjahn and Faure, the large scale 
pattern is similar to outbreaks affecting the areas east of the 
Rockies however with a primary difference being a small 
but statistically significant ridge over the southeastern US 
(see Fig. 2a, b). This ridge precedes the CAO by several 
days, including the large ridge that develops subsequently 
over Alaska. A cold air mass between these ridges is 
directed further westward (a more northerly or northeast-
erly flow of the cold air) than for eastern CAOs. The distor-
tion of the flow by that southeastern ridge enables the cold 
air mass to cross the Rockies. Loikith and Broccoli (2012) 
capture a portion of this pattern in geopotential heights at 
500 hPa using their ‘grand composite’ technique. More 
local to the area of the extreme, colder temperatures are 
associated with an adjacent surface high (e.g. the concep-
tual model of Colle and Mass 1995). Favre and Gershunov 
(2006) pursue this link to anticyclones affecting western 
North America; and develop indices based on frequency 

Fig. 6  Grand composites of anomalies associated with temperature 
regimes over North America: SLP anomalies (hPa) are shaded and 
Z500 height anomalies are contoured every 20 m; red (blue) contours 
are positive (negative) Z500 anomalies. Grand composites are shown 
for (top) January and (bottom) July extreme (from left to right) cold 
maximum (Tx5), warm maximum (Tx95), cold minimum (Tn5), 

and warm minimum (Tn95) temperatures. The Grand composite 
combines information from extreme temperature events occurring 
at multiple disparate geographical locations over North America. 
The anomaly fields are displayed for a circular domain with a radius 
of 4500 km. From Loikith and Broccoli (2012; see text for further 
details)
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and central pressure of transient cyclones and anticyclones 
in the eastern North Pacific. Their ‘CA’ index is the differ-
ence, cyclone minus anticyclone, in strength and frequency. 
Negative CA values are correlated with the coldest 10 % of 
winter minimum temperatures.

Eastern US events (i.e., east of Rockies) Several statisti-
cal and synoptic studies either directly or indirectly relate 
to the topic of US CAOs occurring east of the Rockies (e.g., 
Konrad and Colucci 1989; Colle and Mass 1995; Konrad 
1996; Walsh et al. 2001; Cellitti et al. 2006; Portis et al. 
2006). Common precursors to eastern CAO events include 
anomalously high surface air pressure over western Canada 
(linked to a polar air mass), occurrences of the negative 
(positive) phase of the NAO (PNA) teleconnection pattern 
and/or an anomalously weak stratospheric polar vortex. 
CAO onset is characterized by the south/southeastward 
advection of the polar air mass in association with one or 
more of the following synoptic LSMP features: southward 
extension or propagation of the surface high pressure from 
Canada, surface cyclogenesis over the eastern US, anoma-
lously low 500 hPa geopotential heights over the Great 
Lake region and the southeastward movement of an upper 
level shortwave from Canada.

Distinguishing between east coast (EC) and Midwest 
(MW; just east of the Rockies) CAO events, EC events 
result from the geostrophic cold advection enhanced by 
southeastward propagation of the surface high pressure 
system (with winds often amplified by surface cyclogen-
esis further east) leading to detachment of the polar air 
mass from its source (Konrad and Colucci 1989; Walsh 
et al. 2001). MW events are linked to the southeastward 
meridional extension of surface high pressure from Canada 
leading to unusually lengthy cold air transport (Walsh et al. 
2001). For MW events occurring just east of the Rockies, 
the cold advection is related to low-level northerly ageos-
trophic flow within a region of cold-air damming against 
the topography (Colle and Mass 1995). In all cases, the 
salient LSMP features are synoptic-scale in nature and, 
thus, governed by generally well-understood dynamical 
physical principles considered to be well-represented by 
weather and climate models. The CAO process, itself, is 
largely due to radiative cooling (during polar air mass for-
mation and early stages of CAO onset) and southward air 
mass transport (by the horizontal wind) partly offset by adi-
abatic warming induced by large-scale subsidence (Konrad 
and Colucci 1989; Walsh et al. 2001; Portis et al. 2006). 
Although the proximate physics associated with the CAO 
process itself is reasonably well characterized, our knowl-
edge of the physics of the LSMP patterns is implicit and 
depends on subjective associations (between advective 
circulation features and synoptic LSMPs) that have been 
made in earlier studies. As such, there is an existing need to 
(a) more objectively link critical advective CAO circulation 

features to dynamical entities (e.g., potential vorticity) and 
(b) subsequently assess the physical origin of these dynam-
ical entities.

3.2.4  Summer heat wave events

Hot spells over North America have an intense upper level 
ridge as one expects hydrostatically. This ridge is seen in 
Figs. 2 and 6. There can also be a shallow layer of rela-
tively lower pressure, sometimes called a ‘thermal low’. 
Hot spells occur from a combination of factors: a hot air 
mass displaced from its normal location (displaced from 
the southwestern desert), strong subsidence (causing adi-
abatic warming), and solar heating. Solar heating is more 
effective when surface latent heat fluxes are constrained (by 
drought, for example). The first two factors are enhanced 
and help define the LSMP for a hot spell; there may be an 
upstream trough (e.g. Figs. 2, 6) that enhances southwest-
erly advection of warmer air. Other factors influence how 
the LSMP develops. What follows are details for different 
regions of North America.

West coast events Heat waves affecting the west coast 
are linked to an upper air LSMP that has a local ridge. For 
California Central Valley heat waves, that ridge is typi-
cally aligned with the west coast and the LSMP also has 
upstream features: a trough south of the Gulf of Alaska 
and a ridge further west, south of the Aleutians (Grot-
jahn and Faure 2008) (see Fig. 2d). The local ridge is eas-
ily understood as resulting from high thickness due to the 
anomalous high temperatures through the depth of the 
troposphere generally centered along the west coast of the 
US. (Plots can be found here: http://grotjahn.ucdavis.edu/
EWEs/heat_wave/heat_wave.htm) Grotjahn and Faure also 
show that a statistically significant ridge in the northwest 
Pacific develops prior to the significant intensification of 
that west coast ridge. These features are essentially equiva-
lent-barotropic through the depth of the troposphere. While 
Grotjahn and Faure found variation amongst the events, 
the ensemble average consists of a significant temperature 
anomaly that in the lower troposphere (850 and 700 hPa) 
is located just off the Oregon and northern California coast 
and elongated meridionally. The narrow zonal with longer 
meridional scale is consistent with station data analyzed 
by Bachmann (2008). Bachmann found that extreme sur-
face temperature dates in Sacramento were more frequently 
matched by corresponding extreme dates at many stations 
located west of the Sierra Nevada and Cascades mountain 
ranges than closer stations east of the mountains. Grotjahn 
(2011) shows that the temperature anomaly leads to a ther-
mal low being at the coast that sets up a low level pressure 
gradient that opposes penetration by a cooling sea breeze. 
The lower and mid-tropospheric flow has anomalous signif-
icant easterlies that are also downslope over some regions, 

http://grotjahn.ucdavis.edu/EWEs/heat_wave/heat_wave.htm
http://grotjahn.ucdavis.edu/EWEs/heat_wave/heat_wave.htm
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most notably the Sierra Nevada mountains. Finally, there is 
notable sinking that lowers the climatological subsidence 
inversion and hence sunlight rapidly heats up the shallow 
layer beneath. (These factors are seen in Fig. 7).

Gershunov et al. (2009, hereafter GCI) make the novel 
distinction of considering separately heat waves that have 
high daytime maximum and events with high nighttime 
minimums. In so doing they uncover an LSMP with unu-
sually high values of precipitable water (PW) over their 
region of interest occurring during their ‘nighttime’ heat 
waves (but not their ‘daytime’ events). GCI emphasize a 
trend of increasing occurrence of ‘nighttime’ events. Ger-
shunov and Guirguis (2012) also find that trend in all their 
sub-regions of California and also show another trend: 
increasing longitudinal extent of Central Valley heat waves. 
GCI show maps of anomalous geopotential heights which 
also show the west coast ridge (height anomaly centered 

over Washington State) with upstream (and downstream) 
troughs, consistent with Grotjahn and Faure. GCI show the 
LSMP for SLP (high over the Great Plains and low off the 
west coast) and remark that both daytime and nighttime 
events have a corresponding general southeasterly flow of 
air out of the desert southwest. This flow occurs through-
out the lower troposphere with associated high frequency 
(<7 day period) heat fluxes that are prominent just off the 
coast (Grotjahn 2015); and consistent with setting up the 
offshore pressure gradient (to oppose a cooling sea breeze).

For heat waves affecting the western areas of Washing-
ton and Oregon, Bumbaco et al. (2013, hereafter BDB) 
show an upper level (500 hPa) ridge over the west coast and 
trough upstream over the Gulf of Alaska. That trough and 
ridge pattern is generally similar to the pattern for Califor-
nia heat waves, including the tropospheric height anomaly 
centered at the coast (Grotjahn 2011). Using a regression 

Fig. 7  Composite synoptic weather patterns at the onset of the 14 
Sacramento California summer (JJAS) heat waves studied by Grot-
jahn and Faure (2008). a Temperature at 850 hPa with a 2 K inter-
val. b 700 hPa level pressure velocity with 2 Pa/s interval and where 
positive values mean sinking motion. c Sea level pressure with 2 hPa 
interval, d Surface wind vectors with shading applicable to the zonal 

component. Areas with yellow (lighter inside dark) shading are posi-
tive (above normal) anomalies that are large enough to occur only 
1.5 % of the time by chance in a same-sized composite; areas that are 
blue (darker inside light) shading are negative anomalies occurring 
only 1.5 % of the time
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approach Lau and Nath (2012) find a ridge and trough 
further upstream (over the western North Pacific) that are 
stronger several days prior to the event onset; both the loca-
tion and timing of the ridge and trough are similar to those 
shown in Grotjahn and Faure. Similar to Grotjahn (2011, 
2013, 2015), BDB find the lower tropospheric temperature 
anomaly (850 hPa) to be centered at the west coast of North 
America. Hence, BDB find negative values of sea level 
pressure anomaly centered offshore that sets up an offshore 
low level pressure gradient and offshore (northeasterly) flow 
(again similar to California heat waves). Consistent with 
the heat fluxes shown in Grotjahn (2015), the near-coast 
thermal trough appears to migrate from the southwestern 
deserts across the length of California to finally reach west-
ern Oregon and Washington (Brewer et al. 2012).

Midwest events Heat waves affecting the Midwest have 
anticyclonic flow at mid-levels, either as a closed anticy-
clone or as a strong ridge (Klein 1952; Karl and Quayle 
1981; Namias 1982; Chang and Wallace 1987; Lyon and 
Dole 1995; Kunkel et al. 1996; Livezey and Tinker 1996; 
Palecki et al. 2001; Meehl and Tebaldi 2004; Lau and Nath 
2012; Loikith and Broccoli 2012; Teng et al. 2013), with 
associated clear skies allowing maximum solar heating of 
the surface as well as adiabatic warming from subsidence.

For at least some events, the continental anticyclonic 
flow at mid-levels is part of a larger pattern of anomalies 
with remote centers over the Pacific and Atlantic (Namias 
1982; Chang and Wallace 1987; Livezey and Tinker 1996; 
Lau and Nath 2012; Loikith and Broccoli 2012; Teng et al. 
2013), with some suggestion that the anomalies are gen-
erated in the Pacific (Namias 1982; Lyon and Dole 1995; 
Livezey and Tinker 1996; Teng et al. 2013), with possible 
predictability (Teng et al. 2013). Teng et al. (2013) have 
noted the similarity of the circulation pattern to a Rossby 
wave number 5 wave train in the jet stream waveguide. The 
commonality of the wave train pattern structure and evolu-
tion among these studies is difficult to assess, though.

Studies of the surface flow have been less common, 
but negative SLP anomalies have been noted (Chang and 
Wallace 1987; Lau and Nath 2012; Loikith and Broccoli 
2012), and Lau and Nath (2012) have shown anomalous 
southerly (or southwesterly) flow at the surface, consistent 
with strong horizontal warm advection. The regional-scale 
flow also interacts with local mechanisms, particularly the 
Urban Heat Island (UHI) effect (Kunkel et al. 1996; Pal-
ecki et al. 2001). Another common element identified in 
several studies is the presence of drought (Chang and Wal-
lace 1987; Karl and Quayle 1981; Namias 1982; Lyon and 
Dole 1995) as well as simultaneous precipitation deficits 
(Lau and Nath 2012).

Eastern events While the large-scale meteorological pat-
terns associated with heat waves in the eastern US have not yet 
seen much study, they have been examined for the Northeast 

and Central US Gulf Coast in Lau and Nath (2012) and for 
piedmont North Carolina by Chen and Konrad (2006). For 
both the Northeast and Gulf Coast, Lau and Nath found a 
mid-level ridge centered over the region as part of a wave train 
and precipitation deficits, broadly similar to the results for the 
Midwestern regions. For piedmont North Carolina, Chen and 
Konrad showed that, at upper levels, a strong ridge over or just 
upstream of the region was a common feature along with, at 
lower levels, adiabatic warming associated with descent from 
the Blue Ridge Mountains into the piedmont region.

4  Modeling of temperature extremes 
and associated circulations

Temperature extremes have some predictability at weather 
and climate time scales that can be exploited by mod-
els for short term predictions and long term projections. 
At weather time scales the predictability of North Ameri-
can extreme temperature events (ETEs) is largely depend-
ent upon the nature of the LSMPs that help organize their 
occurrence. The greatest predictability is expected to occur 
during the boreal cool season when ETEs are, at least in 
part, influenced by low frequency modes (PNA, NAO and 
blocking events) (Westby et al. 2013) with intrinsic time 
scales of several days to weeks (Feldstein 2000). Loikith 
and Broccoli (2012) illustrated that the local LSMPs linked 
to ETEs generally exhibit synoptic spatial scales rather 
than planetary scales, though a wave train can be long (e.g. 
Grotjahn and Faure, 2008; Fig. 2). Given the essential role 
of synoptic-scale disturbances such as east coast cyclones 
and southward moving polar anticyclones over the Midwest 
(Konrad and Colucci 1989; Walsh et al. 2001) in ETEs, 
pointwise predictability of ETEs is ultimately limited by 
our ability to forecast the details of synoptic-scale phenom-
ena several days in advance (Hohenegger and Schär 2007).

Hence a significant challenge for models to predict tem-
perature extremes is their ability to predict or simulate syn-
optic scale phenomena, low frequency modes that provide a 
large-scale meteorological context, and small scale atmos-
pheric processes and land surface processes that influence 
the surface heat fluxes. Both dynamical and statistical mod-
els have been developed and used to simulate and project 
changes in temperature extremes. This section briefly sum-
marizes the methods and skills of the models, while analy-
sis of observed trends and projections of future trends are 
summarized in Sect. 5.

4.1  Global and regional climate model skill 
in simulating temperature extremes

Both global and regional climate models have been used 
to elucidate processes contributing to ETEs and evaluate 
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model skills. The ability of global models to reproduce the 
observed temperature extreme statistics has been assessed 
by Sillmann et al. (2013a, b), Westby et al. (2013) and 
Wuebbles et al. (2014) using CMIP5 multi-model ensem-
bles. Figure 8 shows a performance portrait of the normal-
ized root mean square errors over the North American land 
area from the 28 available CMIP5 “historical” models for 
eight temperature based ETCCDI indices over 1979–2005 
compared to the ERA Interim reanalysis (Dee et al. 2011). 
As in Gleckler et al. (2008), to plot errors from multiple 
variables on the same scale, they are normalized by the 
median error of the CMIP5 models using the formula

Here, Emedian is the median root mean square error (RMSE) 
of the CMIP5 models, Ej is the RMSE of the jth model 
and ER

j  is that model’s “relative RMSE” and is plotted for 
seasonal means of the indices. In this analysis, the model 
median RMSE in Eq. 1 is calculated for each variable over 
all seasons and then applied to normalize each season in 
order to assess the relative seasonal performance. Blue colors 
represent errors lower than the median error, while red colors 
represent errors larger than the median error. Seasons are 

(1)ER
j = 100×

(Ej − Emedian)

Emedian

.

denoted by triangles within each square. The different mod-
els are arranged in order of increasing average relative error 
with the models with the lowest average relative error on the 
left. The average relative error is positive for all 8 indices as 
Fig. 8 has more deep red than deep blue colors even though 
the number of positive and negative relative errors is equal. 
Spring has significantly lower relative error (3.8 %) averaged 
across all models and variables, compared to winter (5.0 %), 
summer (5.2 %) and fall (5.8 %).

To get a sense of model errors relative to the observa-
tional uncertainty, the 3 rightmost columns of Fig. 8, show 
the error of three other reanalyses considered in Sillmann 
et al. (2013a) relative to the model median RMSE. The 
two best models (leftmost in Fig. 8) are competitive with 
these other reanalyses but most models’ RMSE relative to 
ERA Interim are significantly larger than the disagreement 
among reanalyses for many fields. Reanalysis disagree-
ments in the cold night metrics (tnn, tn10p) and a cold day 
metric (tx10p) are notable and a larger number of models 
perform better in these fields relative to this crude measure 
of observational uncertainty.

Sillmann et al. (2013a) found that the spread amongst 
CMIP5 temperature extreme indices tends to be smaller 
than that of the CMIP3 models (earlier version of the 

Fig. 8  Performance portrait of 
the CMIP5 models’ ability to 
represent the temperature based 
ETCCDI indices over North 
American land. The colors 
represent normalized root 
mean square errors of seasonal 
indices compared to the ERA 
Interim reanalysis. Blue colors 
represent errors lower than the 
median error, while red colors 
represent errors larger than 
the median error. Seasons are 
denoted by triangles within 
each square. Models marked 
with “*” are not included in 
the RCP8.5 projections. Root 
mean square errors normalized 
by the model median RMSE for 
3 other reanalyses are shown 
in the rightmost columns for 
comparison
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CMIP5), indicating reduced uncertainty. They identified 
an increase in the monthly maximum daily maximum tem-
perature and a decrease in the monthly minimum daily 
minimum temperature by the CMIP5 models over the 
high northern latitudes, compared to CMIP3. Analysis of 
20 year return values in the CMIP3 models by Zwiers et al. 
(2011) found that models tend to warm the minimum tem-
perature less than observed and that they warm the maxi-
mum temperature more than observed over the latter half of 
the twentieth century.

Westby et al. (2013) analyzed reanalysis data and 
CMIP5 historical simulations to study the statistics and low 
frequency mode modulation of wintertime CAOs and warm 
waves (WWs) occurring over the continental United States 
during 1949–2011. The observational results indicate (a) a 
lack of significant long-term trends in ETE frequency and 
(b) a seasonal modulation of CAOs (WWs) by the NAO 
and PNA (NAO, PNA, ENSO and PDO) patterns (Fig. 4). 
Similar behavior is found in the CMIP5 models, showing 
CAOs are mainly modulated by NAO in the southeastern 
US and by PNA in the northwestern US, while WW fre-
quency is modulated by NAO over the eastern US and by 
a combination of PNA, PDO and ENSO over the south-
ern US. The study also found modest influence of ENSO 
on WWs over the southern US, in good agreement with 
Lim and Schubert (2011). Comparison of WWs and CAOs 
between the CMIP5 models and observation indicated that 
the models tend to overestimate WW frequency, but under-
estimate CAOs frequency, although using a larger ensemble 
of CMIP5 models, Gao et al. (2015) found a better agree-
ment between CAO frequency from CMIP5 models and 
reanalysis datasets.

Overall, CMIP5 models properly represent many of the 
significant associations between ETEs and low frequency 

modes, particularly the modulation by the NAO and PNA 
patterns. Similar to Lee and Black (2013) who noted model 
deficiencies in representing low-frequency variability, 
Westby et al. (2013) found that the CMIP5 models under-
estimated the collective influence of low-frequency modes 
on temperature extremes (e.g., Fig. 9). One notable model 
failure is the virtual absence of a seasonal modulation of 
ETEs by the PDO because models do not adequately repre-
sent the nature and physics of the PDO. On the other hand, 
CMIP5 models do a considerably better job in representing 
the general behavior of the NAO and PNA patterns (Lee 
and Black 2013). Westby et al. conclude that predictions 
of future ETE behavior are ultimately limited by the ability 
of state-of-the-art coupled climate models to properly rep-
resent the (evolving) behavior of prominent low frequency 
climate modes. Nonetheless, consistent with observations, 
little evidence of significant trends (in either WW or CAO 
frequency) is found in the model simulations over the con-
tinental US from 1949 to 2011.

Heat waves are associated with anomalous large-scale 
circulation patterns well resolved by GCMs. Grotjahn 
(2013, 2015) describe how the LSMPs for California hot 
spells simulated by a CMIP5 climate model compare with 
the observed LSMPs; while the model generates a simi-
lar large scale pattern and included the needed large scale 
sinking, the model is unable to simulate sea breezes so the 
effect of LSMP blocking of sea breezes during extreme 
heat episodes is likely not captured by the global model. In 
general, heat wave intensity and duration can vary at local 
to regional scales because surface temperature is influenced 
by processes such as land surface fluxes, turbulence and 
winds, and clouds and radiation. For example, land–atmos-
phere interactions were found to play an important role in 
European summer heat waves of the past decades (Fischer 
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Fig. 9  The variance explained in an annual metric of the impact of 
wintertime Warm Waves on the southeast United States from a mul-
tiple linear regression using the NAO and PNA indices as predictors. 
Results are displayed for individual CMIP5 model simulations (blue 

bars) while the light and dark gray lines denote variance values for 
observations and the model mean, respectively (from Westby et al. 
2013)
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et al. 2007). Using a regional model, Jaeger and Senevi-
ratne (2011) and Lorenz et al. (2010) highlighted the key 
role of soil moisture memory on heat wave intensity and 
persistence, respectively. Using observations and a CMIP3 
model, Gershunov and Douville (2008) showed a strong 
negative relationship between preceding winter and spring 
precipitation and summertime heat in the central, Midwest-
ern, and eastern US. In regions with limited soil moisture, 
surface temperature can respond more strongly to the large-
scale circulation anomaly that leads to clear sky and strong 
surface solar heating because surface cooling from evapo-
transpiration is limited. As soil moisture is influenced by 
antecedent precipitation and surface properties such as land 
cover, topography, and soil characteristics that vary at local 
to regional scales, heat wave intensity and duration can 
vary similarly, within the context of large-scale influence 
by a circulation anomaly. Thus the ability of climate mod-
els to simulate and predict heat waves is also dependent on 
physics parameterizations and grid resolution.

Lau and Nath (2012) analyzed GCM simulations per-
formed at 200 km and 50 km grid resolutions and found 
considerable resemblance between the temperature anom-
aly patterns from the coarse and fine resolution simula-
tions, except for some local details generated by the higher 
resolution model. Both models were able to capture real-
istic heat wave intensity, duration, and frequency in vari-
ous key regions of North America and the synoptic features 
accompanying the warm episodes as revealed in the North 
American Regional Reanalysis. Kunkel et al. (2010) com-
pared regional climate simulations performed at 30 km 
resolution over North America driven by two GCM histori-
cal simulations with the respective GCM simulations and 
observations. Although the two GCM simulations have 
opposite temperature biases, downscaling by the RCM pro-
vided improved simulations of heat waves in both cases, 
with the overall averaged biases reduced by a factor of 
two compared to the GCMs. Gao et al. (2012) compared a 
regional simulation at 4 km grid resolution over the eastern 
US driven by a GCM with observations and the GCM sim-
ulation. They found statistically significant improvements 
in heat wave intensity and duration in the regional simu-
lation compared to the global simulation in 14 out of 16 
states in the eastern US and attributed the improvements to 
high-resolution topography and land use information that 
impact local surface temperature.

In summary, global climate models have demonstrated 
useful skill in simulating heat waves and cold air outbreaks 
over North America and their linkages to low frequency 
variability such as NAO, PNA, and ENSO. However, mod-
els generally underestimate the combined influence of low 
frequency modes on temperature extremes, with PDO and 
its modulations on temperature extremes being most nota-
bly deficient. Although heat waves and their LSMP are 

well resolved by global models, some studies have dem-
onstrated improved skill in simulating heat waves using 
regional models that may better capture regional processes 
such as land–atmosphere interactions influenced by surface 
heterogeneity.

4.2  Statistical modeling of temperature extremes

Most statistical methods for downscaling of temperature 
can be thought of as extensions of the model output statis-
tics and related approaches to statistical weather forecast-
ing (e.g., Wilks 2006). The most popular method is multi-
ple regression analysis (e.g., Easterling 1999) but it cannot 
be expected to represent extremes well, as only the condi-
tional mean of temperature given the values of the predictor 
variables (such as indices of LSMPs) is statistically mod-
eled. In particular, the error term in the regression equation 
is usually assumed normally distributed, which is not nec-
essarily realistic for temperature extremes.

Recently, bias correction techniques involving quan-
tile mapping (Thrasher et al. 2012), or quantile matching 
(Ho et al. 2012), have become a popular way to adjust the 
entire probability distribution of temperature. Because 
of the mismatch in spatial (and sometimes temporal) 
scales involved in downscaling, the downscaled tempera-
tures typically do not possess high enough variance. This 
issue is crucial for extremes, with it being preferable to 
increase the variance through randomization rather than 
direct “inflation” (Maraun 2013; von Storch 1999). Ide-
ally, quantile mapping for the extreme tails of the tem-
perature distribution should use statistical methods based 
on extreme value theory (e.g., Coles 2001). Kallache et al. 
(2011) proposed such a method, in which the quantile 
mapping involves fitting the Generalized Pareto distribu-
tion (GPD) to the upper (or lower) tail of the distribution. 
Although their application was to precipitation extremes, 
the technique should apply equally well to temperature 
extremes.

The statistical methods for relating extreme tempera-
tures to LSMPs and climate modes, described earlier in 
Sect. 2, could also be applied in the context of statistical 
downscaling. In this approach, the extremal distribution 
(GEV or GPD) is conditioned on indices of LSMPs or 
climate modes, as well as possibly on other covariates in 
the context of statistical downscaling. Brown et al. (2008) 
relate daily maximum and minimum temperatures to the 
NAO index; Sillmann et al. (2011) relate European CAOs 
to a blocking index; Katz and Grotjahn (2014) relate Cali-
fornia hot spells to an associated LSMP index. The chief 
limitation is that, given the effective reduction in data when 
only considering extremes, not as many predictors neces-
sarily could be included as in more conventional statistical 
downscaling.
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5  Observed and projected trends of temperature 
extremes

5.1  Observed trends and variability

Traditional methods in climate research for detecting trends 
in temperature extremes tend to focus on the relative fre-
quency of exceeding a high threshold or of falling below 
a low threshold, as well as indices derived from such rates 
(Karl et al. 1996; Gleason et al. 2008). Such approaches 
generally fail to give a complete picture of trends in tem-
perature extremes as they neglect the intensity of the event. 
It should be noted that other forms of indices are also com-
monly used to monitor changes in temperature extremes 
(Zhang et al. 2011).

Extreme value statistics (Coles 2001) formally account 
for both the rate of exceeding a high threshold and in 
the excess over a high threshold so they can be applied 
to detect trends in each of these two components (Katz 
2010).A fundamental result in extreme value theory is that 
block maxima (e.g., highest daily maximum temperature 
each summer), suitably normalized, have an approximate 
generalized extreme value (GEV) distribution. In prac-
tice, it is more efficient and can be more informative to fit 
the GEV indirectly using the peaks over threshold (POT) 
approach, which involves a Poisson distribution to approxi-
mate the rate of exceeding a high threshold; and a gener-
alized Pareto (GP) distribution to approximate the excess 
over the high threshold. Possible trends in extremes can be 
introduced into these extreme value distributions with time 
as a covariate. That is, the location, scale, and shape param-
eters of the GEV (or, equivalently, the rate parameter of the 
Poisson distribution and the scale and shape parameters of 
the GP distribution) can shift with time (Coles 2001). See 
Brown et al. (2008) for examples of the application of the 
POT approach to trend analysis of temperature extremes.

Peterson et al. (2013) applied the POT approach with 
a threshold corresponding to the 99th percentile for the 
upper tail (or 1st percentile for the lower tail) specific to 
each grid point in the US. To avoid temporal dependence 
of extremes, only the single highest (or lowest) daily tem-
perature within a run of consecutive days exceeding the 
threshold was retained (termed “runs declustering”). Using 
the equivalent parameterization in terms of the GEV distri-
bution, a linear trend in the location parameter of the GEV 
was fitted by the technique of maximum likelihood (Coles 
2001), assuming that the scale and shape parameters were 
constant over time. To adjust for seasonality, the analysis 
was performed in terms of daily anomalies.

Figure 1 shows the estimated change in 20-yr return 
levels between 1950 and 2012, along with an indication 
of statistical significance. The broadest region of warm-
ing occurs for the cold tail of minimum temperature (panel 

d). Cooling occurs in the upper tail of both daily maxi-
mum (panel a) and minimum (panel c) temperature in the 
southeastern US. Although these results are not explicitly 
in terms of heat waves or cold air outbreaks, they do reflect 
changes in extremes that are often part of such multi-day 
events (Furrer et al. 2010).

Atmospheric reanalyses have provided a significant 
source of data for weather and climate research because 
they assimilate multitudes of available observing systems 
and provide continuous fields for regions or variables with 
sparse or no direct observations. Utilizing reanalyses in the 
calculation of extreme indices should be approached with 
a strong validation strategy (as discussed in Zhang et al. 
2011). In the case of temperature, processes near the sur-
face can influence the distribution of temperature. How-
ever, Simmons et al. (2010) show that ERA Interim rea-
nalysis surface temperature reproduces that of HadCRUTv 
very closely, owing to the correction of soil water by the 
analysis of near-surface atmospheric water and tempera-
ture. Further, Bosilovich (2013) shows that even without 
surface analysis, reanalyses can provide robust interan-
nual variability of seasonal surface temperature at regional 
scales. Furthermore, reanalysis temperature, augmented 
with observations, can provide a substantially improved 
representation of the diurnal cycle of temperature (maxi-
mum and minimum) consistently over the global land mass 
(Wang and Zeng 2013).

Two reanalyses, the modern-era retrospective-analysis 
for research and applications (MERRA) (Rienecker et al. 
2011) and the climate forecast system reanalysis (CFSR) 
(Saha et al. 2010) have stored data at hourly intervals that 
allow evaluation of the diurnal cycle, especially maximum 
and minimum temperatures that are important to extreme 
temperature events. Figure 10 shows the US summertime 
2011 Warm Spell Duration Index (WSDI, e.g. Alexander 
et al. 2006) computed from the occurrences of daily mean 

Fig. 10  Warm Spell Duration Index from MERRA for 2011 summer 
over the United States. WSDI is computed from the 90th percentile of 
daily mean temperatures for the summer season
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temperature exceeding the 90th percentile for 6 days or 
longer from MERRA. This diagnostic relies on continuous 
data to derive the seasonal index, but also identify the spa-
tial extent. Figure 11 shows the US trends in WSDI from 
MERRA. Positive trends are apparent in many areas of the 
US with some regions having statistical significance (above 
90 % confidence).

Walsh et al. (2001) used global reanalysis data to study 
cold air outbreaks and identified Midwest, Gulf Coast, 
and East Coast as regions influenced by CAOs. They did 
not identify any apparent trend in CAOs in North America 
between 1948 and 1999, although analysis from a single 
station suggests that extreme outbreaks may have been 
more frequent in the late 1800s and early 1900s. Extend-
ing the study to include the recent decade from the global 
reanalysis data may provide further confidence in potential 
trends in CAOs in North America.

The twentieth century reanalysis (Compo et al. 2006, 
2011) provides objectively analyzed four-dimensional data 
on a 2° global grid. With assimilation of synoptic surface 
pressure available since the late nineteenth century, this 
dataset covers the period from 1871 to 2012 and offers a 
unique opportunity for analysis of long-term trend in tem-
perature extremes and the associated LSMP. Compo et al. 
(2011) showed encouraging comparison of this surface-
based reanalysis product with other reanalyses that make 
use of upper-air and satellite data. Future work utilizing 
this dataset could potentially further advance understanding 
of variability and trends in LSMPs that influence tempera-
ture extremes.

5.2  Projected trends

The CMIP3 and CMIP5 multimodel ensembles have 
been used to investigate projected changes of tem-
perature extremes for the next couple of decades (e.g., 

mid-twentyfirst century) (e.g., Tebaldi et al. 2006; 
Orlowsky and Seneviratne 2012; Sillmann et al. 2013b; 
Wuebbles et al. 2014). Climate change simulations in the 
CMIP5 multimodel ensembles showed greater changes in 
ETCCDI based on daily minimum temperatures than in 
ETCCDI based on daily maximum temperatures. Also, the 
strong emission scenario such as representative concentra-
tion pathways (RCPs) 8.5 (Moss et al. 2010; van Vuuren 
et al. 2011) produced more definitive changes in tempera-
ture extreme statistics than weaker emission scenarios (e.g., 
RCP 2.6 and 4.5). Furthermore, the changes in ETCCDI 
under RCP8.5 tend to be greater than changes under any 
of the scenarios in the special report on emission scenarios 
(SRES) (Nakicenovic et al. 2000) used in CMIP3. The spa-
tial distributions of Sillmann et al. (2013b) showed that the 
northern high latitude regions have the strongest increase in 
the minimum daily minimum temperature, while changes 
in the maximum daily maximum temperatures tend to be 
evenly distributed globally. The study also noted that the 
percentile indices such as warm and cold nights, exhibit the 
highest increases in the tropical regions. This is a result of 
differences in interannual temperature variability between 
the two regions, which is relatively large in mid- to high 
latitudes but small in the low-latitudes.

Figure 12 shows the projected ensemble mean increase 
in two of the ETCCDI indices assessed in Fig. 8 at the end 
of this century (2080–2100) from the reference period of 
1985–2005 under the RCP8.5 forcing scenario of the 5th 
assessment report of the intergovernmental panel on cli-
mate change (IPCC AR5). Twenty-six models are included 
in this multi-model average. Models marked with an “*” in 
Fig. 8 are not included in this projection due to a lack of 
future simulations. The two indices, cold nights (Tnn) and 
hot days (Txx), are chosen to illustrate the seasonal differ-
ences of changes at the extremes of both ends of the dis-
tribution of daily surface air temperatures. The upper left 
panel shows that the wintertime increase in cold nights has 
large changes northward of the middle of the US largely 
corresponding to present day winter snow covered areas. 
Kodra et al. (2011) studied cold extremes in the twentyfirst 
century using nine GCMs and found that despite future 
warming, extreme cold events, both in terms of intensity 
and duration, can persist in the future. Cool nights in the 
summer, shown in the upper right panel, do not exhibit 
such a monotonic poleward behavior. Rather, the continen-
tal interior warms more than the edges for this measure of 
extreme temperature. Wintertime increases in warm days, 
shown in the lower left panel, are projected to be signifi-
cantly less than wintertime cold nights; although some of 
the poleward gradient property is present. Summertime 
increases in hot days are projected slightly warmer than 
but generally similar to summertime increases in cool 
nights. One noticeable difference is that future extreme 

Fig. 11  Trend in WSDI as determined from MERRA for US sum-
mertime temperatures. Dashed and solid black contours indicate sta-
tistical significance (at 90 and 95 % confidence respectively)
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temperatures in the Mexican interior warm more in the 
summer than in the winter.

Seasonality in the projected changes of these two indi-
ces is a reflection of the complex mechanisms affect-
ing changes in extreme and mean temperatures in North 
America. Changes in snow cover certainly affect the 
future winter mean and extreme temperatures. Likewise, 
decreases in soil moisture affect the future summer mean 
and extreme temperatures. The additional possibility of 
biases and changes in LSMPs affecting extreme tempera-
tures must be considered in light of these and other mech-
anisms. For example, van Oldenborgh et al. (2009) found 
that changes in the large-scale circulation, including a shift 
towards a more westerly circulation and the North Atlan-
tic current need to be better simulated especially in winter 
and spring for more realistic simulations of warming over 
Western Europe in recent decades. Gershunov and Guir-
guis (2012) noted that three out of four GCMs analyzed 
did not adequately capture the synoptic causes of Califor-
nia heat waves. When sub-regional heat waves are defined 
relative to the changing local climate (a ‘non-stationary’ 
perspective), coastal heat waves have greater impact than 
those inland even though the summertime average warm-
ing is stronger inland. Sillmann and Croci-Maspoli (2009) 
found that European blocking events influence particularly 
the winter cold extremes in Europe. For future projection, 
decrease in blocking frequency with increase in maximum 
blocking duration was simulated under the A1B scenario. 

Also, the blocking pattern shifts northeastward, affecting 
a larger part of Europe by giving rise to anomalously cold 
winter months.

To partly address the question of whether changes in 
heat waves in the future are associated with a shift in the 
daily maximum temperature or changes in LSMP, Lau and 
Nath (2012) noted that the probability distribution func-
tions (PDFs) for the current and future climate over most 
regions that experience heat waves in the US have similar 
shape but were shifted by the mean warming in the daily 
maximum temperature, and the magnitude of skewness of 
the PDFs exhibited only minor changes from the current 
to future climate. Further statistical manipulations of the 
model outputs suggest that the increase in heat wave inten-
sity and frequency in the future is primarily associated with 
a shift in the daily maximum surface temperature, which 
suggests that changes in the characteristics of LSMPs asso-
ciated with heat waves may be minor. Grotjahn (2015) 
shows trends in an LSMP index for California hot spells 
in reanalysis and both historical and future simulations by 
a climate model. Future changes in heat waves may also 
be modulated by changes in land–atmosphere interactions. 
For example, global warming may shift the climate regime 
northward and establish new transitional zones with strong 
land–atmosphere coupling strength (Seneviratne et al. 
2006) and drying over the subtropics and mid-latitudes 
during summer in the future may increase land–atmos-
phere feedbacks in general (Dirmeyer et al. 2012) and 

Fig. 12  Projected seasonal 
changes in North American 
extreme temperatures from 
the CMIP5 multi-model at the 
end of this century under the 
RCP8.5 forcing scenario. The 
reference period is 1985–2005 
while the future period is 
2080–2100. Winter changes are 
shown on the left while sum-
mer changes are shown on the 
right. The top figures represent 
changes in cold nights (Tnn) 
while the lower figures repre-
sent changes in hot days (Txx). 
Units: Kelvins
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result in amplified heat wave response to global warming. 
For CAOs, Schneider et al. (2015) and Gao et al. (2015) 
both demonstrated that the mean warming and the reduced 
temperature variance due to polar amplification account 
for most of the decrease in CAOs in a warmer climate. 
Gao et al. (2015) further found that changes in temperature 
skewness associated with changes in blocking frequency 
and thermodynamical modulation by melting of snow and 
sea ice along the 0 °C isotherm contribute additionally to 
regional differences in CAO changes.

Regional climate models have also been used to inves-
tigate temperature extreme changes in the future. Kunkel 
et al. (2010) showed that the regional model has superior 
skill in simulating heat waves compared to the global mod-
els, but it largely inherited the climate sensitivity from the 
GCMs. They found considerable regional variations in 
future heat wave characteristics depending on the emis-
sion scenarios and GCMs used. Using a suite of regional 
climate simulations driven by 5 ensemble members of 
a GCM, Diffenbaugh and Ashfaq (2010) found that hot 
extremes are intensified over much of the US associated 
with a summer anticyclonic circulation anomaly in the 
future, which reduces precipitation and soil moisture, and 
amplifies severe hot and dry conditions. The regional simu-
lations showed a summer anticyclonic anomaly that is more 
widespread than in the GCM.

Overall, some robust changes in temperature extremes 
have emerged from analysis of the CMIP3 and CMIP5 
multimodel ensembles as well as targeted global and 
regional climate modeling efforts. Model projections gen-
erally indicate increased frequency, intensity, and duration 
of heat waves, and despite global warming, cold extremes 
may persist in some regions due to changes in blocking 
events (Vavrus et al. 2006; Gao et al. 2015). More detailed 
analyses using multimodel ensembles may provide further 
insights on the mechanisms of heat wave changes associ-
ated with land–atmosphere coupling and potential changes 
in LSMPs affecting both heat waves and cold air outbreaks. 
Additionally, well-designed climate modeling experiments 
combined with observational analyses that target specific 
mechanisms and hypotheses may help isolate different fac-
tors and provide constraints for more robust projections of 
temperature extreme changes.

6  Summary

This review paper summarizes our current knowledge of, 
and context for developing new understandings about, 
extreme hot and cold temperature events affecting regions 
of North America. The topic of extremes encompasses 
many scientific issues and a breadth of time and space 
scales. Understanding extreme events ranges from how 

events are defined and measured, to how extreme events 
are studied statistically, theoretically, and with models. To 
reduce the breadth of scales, the paper focuses upon the 
large scale meteorological patterns (LSMPs) that accom-
pany extreme temperature events (ETEs) of short dura-
tion. However, even with this narrower focus, one easily 
sees that much further progress is needed to understand 
the properties of extreme temperature events and their sup-
porting LSMP processes. Thus, the primary goal of this 
report is to provide guidance to researchers interested in 
studying extreme temperature events, especially in rela-
tion to their associated LSMPs. As such, a variety of tech-
niques are described for identifying the LSMPs, including 
the relative merits of each approach. A variety of analysis 
tools are identified which highlight the linkage of LSMPs 
to both remote low frequency phenomena and local factors. 
Also highlighted is the information gleaned from multiple 
climate models including simulation issues and projected 
trends.

Section 2 presents methods of defining extreme tempera-
ture events statistics using both simple indices and extreme 
value statistical techniques. Also surveyed are methods 
used to identify and connect LSMPs to extreme tempera-
tures. Recent advances in statistical techniques, involving 
conditional extreme value analysis, offer an opportunity to 
connect LSMPs to extreme temperatures through appropri-
ately defined covariates (i.e., indices of LSMPs) that sup-
plement more straightforward analyses.

Section 3 surveys our current knowledge of LSMPs 
related to ETEs. Although phenomena ranging from syn-
optic-scale waves to planetary-scale climate modes are 
implicated as contributors to ETEs, existing information 
on (a) the physical nature of these contributions and (b) 
the dynamical mechanisms responsible for the implicated 
LSMPs is uneven and incomplete. A diagnostic formal-
ism is put forth for systematically isolating the underly-
ing physics of LSMP life cycles with an ancillary goal of 
identifying essential large-scale circulation “markers” for 
climate model validation purposes.

Section 4 summarizes the approaches used to model 
extreme temperatures, including dynamical methods using 
global and regional climate models and statistical models. 
Although climate models generally capture heat waves 
and cold air outbreaks with some fidelity compared with 
observations, they overestimate warm wave frequency and 
underestimate CAO frequency. Furthermore, while CMIP5 
models properly represent many of the significant associa-
tions between ETEs and low frequency modes, they under-
estimate the collective influence of low-frequency modes 
on temperature extremes, particularly related to the Pacific 
Decadal Oscillation. Statistical methods used to relate 
LSMPs with extremes are limited mainly by small sam-
ple sizes of extreme events, so that only a small number 
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of predictors can be included to ensure robust statistical 
relationships.

Section 5 surveys observed and projected trends in 
extreme temperatures. The studies that form the basis of 
the IPCC AR5 reports and the 3rd US National Climate 
Assessment do not consider the role of LSMPs in the mag-
nitude and trends of extreme temperatures. However, a sur-
vey of the limited literature exploring these roles in North 
America and Europe suggests that future assessments, par-
ticularly at the regional scale, must include the connection 
between LSMPs and extreme temperature events.

In preparing this report it became apparent that much 
work remains to understand better past and future occur-
rences of ETEs and their underlying physical causes. 
Below are key questions relating to LSMPs that may guide 
future research.

Data and statistical methods Can statistical signifi-
cance tests be developed for all LSMP detection methods? 
What are the effects of spatial resolution and gridding of 
station data on extreme value temperature analysis? How 
shall multivariate extreme statistical tools be optimally 
employed? What extreme values are most useful to various 
application sectors? Can the uncertainty be quantified in 
statistical quantities for given lengths of the observational 
or model data?

Synoptic behavior and physical mechanisms What phys-
ical/dynamical mechanisms form and maintain these rare 
LSMPs? Is more than one type of LSMP pattern respon-
sible for a given regional ETE? Do specific LSMPs arise 
by different processes? (e.g. Lee and Grotjahn 2015) Can 
one quantify the extent to which low frequency phenomena 
such as blocking, MJO and ENSO contribute to each ETE? 
(e.g. Dole et al. 2014) Can one quantify the relative con-
tributions of local factors such as topography, land surface 
states, and land use/land cover in ETE duration and sever-
ity? How do LSMPs vary with season and regional loca-
tion? How sensitive is LSMP characterization to how the 
associated ETE is defined?

Model behavior and trends How well do global and 
regional climate models simulate the synoptic-dynamic 
behavior of relevant LSMPs and their variability and trends 
compared to observations/reanalyses? Can deficiencies in 
model dynamics or physical parameterizations be linked 
to model deficiencies in LSMP properties? How well must 
LSMP properties be simulated by global climate models to 
provide sufficiently accurate lateral boundary conditions 
for regional climate models to accurately simulate the asso-
ciated ETE? Can metrics be designed to discern and under-
stand differences in model skill in simulating an ETE and 
the associated LSMP?

Future properties What are the relative roles of dynamical 
and thermodynamical changes to future changes in LSMPs 
associated with ETEs? Considering current limitations of 

climate models, how can one optimally assess the uncer-
tainty in model projections of future changes in relevant 
LSMPs and their ETEs? Beyond ensemble modeling, what 
type of coordinated experiments can be performed to sys-
tematically evaluate models and infer the sources of model 
differences in LSMPs and ETEs? How can such model eval-
uations improve our interpretation of model projections of 
future changes in extremes and LSMPs?

While many gaps exist, investigators now have a large 
variety of tools and a useful LSMP framework by which 
to pursue better understanding of both historical and future 
extreme temperature events.
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