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Abstract

Linear, quasi-geostrophic, Cartesian, spectral models based onGrotjahn (1980)are solved as
initial-value problems. The basic-state wind flow includes realistic vertical shear in the form of
an upper-level jet but no horizontal shear. Two archetype initial vertical structures are selected.
One structure, labeled “connected”, develops strong nonmodal growth (NG). The other structure,
labeled “separated”, is intended to approximate better conditions prior to observed cyclogenesis.
NG is deduced from growth rates of common growth measures: amplitude, total energy, potential
enstrophy, and their components. Significant NG may occur, usually early on, before a solution
asymptotes to the most unstable normal mode. This study focuses on how the relative amounts of
NG and unstable normal mode growth vary for different scales in both horizontal dimensions.

The peak NG in most growth measures is greatest for wavelengths much smaller than the most
unstable normal mode wavelength. The peak NG occurs earlier as wavelength decreases consistent
with relative phase speed and distance arguments applied to constituent eigenmodes coming into
favorable superposition. The peak NG is much less at all wavelengths for a separated trough than a
connected initial condition (IC), except for the boundary contribution to potential enstrophy. Also,
the connected IC has peak NG at shorter wavelengths than the separated IC. The peak NG occurs
at a shorter wavelength for amplitude than for total energy. The connected and separated ICs are
shown with the horizontal structure of a square wave and for a wave having initially localized
structure along the meridional axis but allowed to evolve in that dimension. The main differences
are initially localized waves develop larger meridional scale and commensurately larger growth
rates. When the meridional structure is allowed to evolve, transient horizontal tilts appear leading
most commonly to zonal mean convergence of eddy momentum. Phase speed differences between
the main eigenmodes comprising the total solution primarily explain this result.
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1. Introduction

The primary aim of this article is to identify how the relative importance of nonmodal
growth (NG) and unstable normal mode growth (UNMG) varies for different horizontal
scales of a simulated extratropical cyclone. Two sets of simulations are run using linear,
quasi-geostrophic (QG) models. In one set the meridional (l) and zonal (k) wavenumbers
are set equal, creating waves that are labeled “square” waves because of their appear-
ance when plotted: the “zero” contours look like squares. (These are not plane waves.)
Setting k = l recognizes that most observed frontal cyclones have similar zonal and
meridional scales in the geopotential height fields (e.g.Grotjahn and Castello, 2000). In
the other set of simulationsk remains a single wavenumber, but the meridional struc-
ture is free to evolve over time from an initial Gaussian profile. In each set of simu-
lations two archetype initial conditions (ICs) are considered: one that favors NG (verti-
cally connected troughs and ridges; hereafter labeled “connected”) and one that approx-
imates observed conditions prior to cyclogenesis (separate upper and lower troughs and
ridges, neither having tilt; hereafter labeled “separated”). The relative presence of NG or
UNMG is identified using time series of the growth rates of amplitude norm (L2), and
mass-integrated total energy (E) and potential enstrophy (H). ThoseH andE growth mea-
sures are further subdivided into their components so as to understand better the source of
the NG.

Prior work on NG has emphasized the dynamics of the process (e.g.Farrell, 1982, 1984);
optimal structures (Farrell, 1989); how NG varies with IC (e.g.Grotjahn et al., 1995;
Grotjahn and Tribbia, 1995); the structure at peak growth (e.g.O’Brien, 1992); and other
factors. This prior work often treats the meridional structure in a simple way (for example,
by assuming no meridional variation).

Preliminary work to understand the effect of horizontal scale and structure on NG has
generally been carried out with simple models.Davies and Bishop (1994)address how
NG varies with horizontal scale in the context of Eady edge waves having zero interior
quasi-geostrophic potential vorticity (QGPV). They do however provide a brief descrip-
tion of the effect of including interior delta function QGPV anomalies but in a context
that excludes growing normal modes. They find for Eady edge waves having zero interior
QGPV that the most rapidly growing horizontal scale depends on the growth measure they
choose to examine for NG. The maximum growth rate takes place at large (small) wave-
lengths for the boundary temperature (pressure) growth measure.Hakim (2000b)considers
NG in the presence of growing normal modes for basic-states with uniform QGPV. He
defines his IC in terms of QGPV as an isolated upper-level anomaly. Hakim includes two
different sized ICs in a table showing growth over 48 h. Hakim’s table indicates that the
shorter IC has larger growth of energy and QGPV but less growth of amplitude and sur-
face pressure minimum. He felt that a larger upper-level disturbance could induce stronger
surface development since the larger disturbance had a much greater projection onto the
most unstable normal mode. Hakim uses zonally and meridionally localized ICs. Because
our work is focused on how scale affects the growth mechanisms, we isolate that scale by
allowing only a single zonal wavenumber for each solution. An in-depth discussion of the
relationship between our work andHakim (2000b)can be found inSection 2.2. Badger and
Hoskins (2001)examine NG at varying horizontal scales in an Eady-type model with ICs
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consisting of zonally isolated perturbations in the pressure field. The growth measure that
they choose is the domain averaged kinetic energy. They find that the shortest scale waves
have the greatest NG, but that the length of time that NG occurs is shortest for the shortest
waves.

The study described here extends this previous work in two specific ways: (1) by using
a more “realistic” basic-state with fewer assumptions than theEady (1949)model and; (2)
by comparing and contrasting the various growth measures that are typically used in the
literature and their components. The model used here includes a “realistic” vertical profile
of basic-state QGPV as well as an interior distribution of perturbation QGPV. Furthermore,
while some studies choose to define their IC based on observed upper-level potential vortic-
ity precursors (e.g.Hakim, 2000b) we define the IC here based on observed precursors in the
pressure field (Grotjahn, 1996). Also, the widely differing growth measures used throughout
the literature make it difficult to compare growth rates and consequently the amount of NG
between studies. Subsequently, quantifying whether NG occurs in a particular model and IC
based on one growth measure can be misleading. As shown inHodyss and Grotjahn (2001)
each of the three most common growth measures (H, E, L2) emphasizes a different part
of the growth and structural change that occurs during cyclogenesis. This article examines
NG at various horizontal scales, focusing on howH, E, L2 and the components ofH andE
evolve over time.

Section 2describes the model and the diagnostic calculations used to evaluate the growth
and evolution of cyclones at various horizontal scales.Section 3shows results for “square
waves” with a single zonal and meridional wavenumber.Section 4shows results forinitially
square waves that have a single zonal wavenumber and a Gaussian meridional structure.
Section 5closes with a discussion of the conclusions.

2. Model and diagnostics

2.1. Model formulation

The model equations consist of nondimensional, linearized conservation of quasi-geostrophic
potential vorticity (QGPV) in the interior of the domain:[

∂

∂t
+ U

∂

∂x

] (
∇2ϕ + 1

ρ

∂

∂z

(
ρε

∂ϕ

∂z

))
+ ∂Q

∂y

∂ϕ

∂x
= 0 (1)

whereϕ is the perturbation stream function andU = U(z) is the prescribed zonal wind.
∂Q/∂y = β − (1/ρ)(∂/∂z)(ρε(∂U/∂z)) is the meridional gradient of the prescribed

or “basic-state” potential vorticityQ; β the nondimensional meridional derivative off, the
Coriolis parameter, appropriate for midlatitude scaling,ρ = ρ(z) the basic-state density
andε = (f0D/NL)2, whereN is the Brunt Väisälä frequency,L the horizontal length scale,
D the vertical length scale, and soε is the squared ratio of the Rossby radius of deformation
over the assumed length scale. All equations presented here have been made nondimensional
using typical scaling magnitudes for horizontal length (L = 1000 km), vertical depth (D =
10 km), speed (V = 10 m s−1), and the advective time scale (L/V = 105 s).
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Assuming rigid horizontal boundaries along the top and bottom of the channel, the bound-
ary conditions inz are[

∂

∂t
+ U

∂

∂x

] (
∂ϕ

∂z

)
− ∂U

∂z

∂ϕ

∂x
= 0, at z = 0, ztop. (2)

The rigid horizontal boundary (2) can be interpreted as coupled to (1); hence, perturbation
QGPV (Bretherton, 1966; Lindzen and Tung, 1978) will consist of three terms:

q = ∇2ϕ + 1
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whereδ(z) is the dirac delta function. The first term in (3) is the relative vorticity (RV),
the second is the “thermal” vorticity (TV), and the last is the contribution from boundary
potential temperature (BPV).

The above equations will be solved for two different types of basic-states. TheEady
(1949)model is recovered if∂Q/∂y = 0,U = z, ε = 1, ztop = 1, andρ = constant. The
model inGrotjahn (1980; hereafter the “G” model) uses realistic vertical profiles of these
quantities. The basic-state in the G model has maximumU at “tropopause level” (z = 1.0;
based on static stability and density profiles modeled after the US Standard Atmosphere).
Q in the G model is largest at 8 km, with surface values one fifth as large. Further details
can be found inGrotjahn (1980)andHodyss and Grotjahn (2001).

These equations are solved numerically using a pseudo-spectral method with the 3rd order
Adams–Bashforth scheme for the time integration. The time increment is 0.005. The domain
is a channel model with boundary conditions inx being periodicity and vanishing normal
velocity in y. It is solved spectrally in the horizontal with second-order finite differences
in the vertical. The horizontal resolution consists of one Fourier mode inx with one iny
for the “square wave” simulations and 32 iny for the meridionally free simulations. The
number of levels in the vertical is 31 for both sets of simulations.

2.2. Initial conditions

The archetype ICs are defined in the pressure field and are shown inFig. 1. The functional
form of the “connected” IC is

ϕc = cos

(
kx + 3π

2
z

)
cos(ly), for z ≤ 1.0 (4a)

ϕc = cos

(
kx + 3π

2

)
cos(ly)e−2(z−1), for z > 1.0 (4b)

wherek, l are the zonal and meridional wavenumbers, respectively. The functional form for
the “separated” IC is

ϕs = [tanh[5(z − 0.3)] cos(kx)+ (1 + tanh[5(z − 0.6)])(1 − tanh[5(z − 1.2)])

cos(kx + π)] cos(ly). (4c)

The “connected” case has uniform amplitude with height in the troposphere and amplitude
decaying with height in the stratosphere. A similar IC is examined inGrotjahn et al. (1995)
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Fig. 1. Archetype initial conditions (a) connected and (b) separated shown in a zonal cross section. The former
represents widely studied initial conditions that have strong nonmodal growth (NG). The latter represents initial
conditions roughly similar to troughs observed prior to cyclogenesis.

for various amounts of initial upstream tilt. When calculations are made using different
initial tilts, Grotjahn et al. (1995)find a relatively similar peak value of growth rate when
the initial upstream tilt is at least 90◦ (90◦ refers to the phase shift upstream from the
surface to the tropopause level). The amount of tilt at peak growth rate depends on the
growth measure. The tilt is often larger whenL2 growth is maximized than forE. The
tilt at peak growth is roughly 90◦. The peak growth rate occurs at later times for initial
tilts larger than 90◦. Accordingly, in this study we elect to consider just one amount of
initial upstream tilt as representative of behavior for a broader class of ICs having constant
amplitude with height. As discussed inGrotjahn et al. (1995)andHodyss and Grotjahn
(2001)this IC contains a significant amount of NG: peak growth rates can be more than
twice the asymptotic value. This type of IC has been the archetype for developing the NG
concept (Farrell, 1982, 1984) precisely because NG is so strong for this IC. The connected
IC provides a benchmark against which the separated IC results may be related to earlier
works using ICs similar to the connected IC. A benchmark is needed because one usually
cannot directly compare growth rates between different articles in the literature because the
models used will have important differences. Common differences include: the basic-state
wind shear and static stability profiles, the model geometry (Cartesian or spherical), and
the level of approximation (compressible or not, variable Coriolis or not, quasi-geostrophic
or “primitive” equation, etc.).

The second IC is labeled the “separated” IC and is based upon observational work reported
byGrotjahn (1996). Twenty-seven rapidly developing extratropical cyclones are tracked be-
fore and during cyclogenesis near the East Coast of Asia. These cyclones develop when a
deep upper trough moves sufficiently close to a shallow surface-trapped trough.Takayabu
(1991)also observed that development commences when a deep upper trough approaches a
shallow surface trough. Takayabu referred to this as “coupling” development; a similar pro-
cess appears to be commonly described in the literature as “type B” cyclogenesis (Petterssen
and Smebye, 1971).
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Hakim (2000b)uses analytic functions to approximate potential vorticity structures found
in the atmosphere. He bases his IC onHakim (2000a). Hakim (2000a)considers several
levels but his primary focus is on the 500 h Pa level where an automated scheme tracks
the relative vorticity of numerous vortices at various stages of development. His approach
appears to have only identified the deep, upper-level QGPV structure that precedes devel-
opment and not the QGPV associated with a shallow, surface pressure feature. We feel the
shallow surface trough is an important part of an IC that is intended to simulate cyclogenesis
and motivates our use of the “separated” IC.

As with the connected case, the separated IC is intended to be representative of a broader
class of ICs with varying degrees of phase shift between upper and lower features. A key
property is that the upper and lower troughs are not connected and each has no upstream
tilt. Grotjahn and Tribbia (1995)examine a similar separated IC and find that it develops
much less NG than does the connected IC. However, their separated IC has larger phase
shift between upper and lower features and they only consider the most unstable normal
mode wavelength. This report finds a similar result asGrotjahn and Tribbia (1995)for the
most unstable wavelength despite the difference in initial phase shift. So, the results shown
here are little sensitive to the initial phase shift between the upper and lower features. As
with the connected IC, the primary difference is to affect the time of occurrence of the peak
growth rate. Other simulations (not shown) by Grotjahn and Tribbia find that these results
are not sensitive to changes of the relative upper and lower amplitudes; thus we feel justified
in drawing broad conclusions from this archetype IC.

2.3. Growth measures

Several growth measures are tracked over time in this study. The integrated mass weighted
total energy,E is defined as:

E = 1

2

∫
v

ρ(ϕ2
x + ϕ2

y + εϕ2
z )dV. (5)

For later reference, the mass weighted integral of the two components of (5) will be referred
to as the kinetic energy (KE) and the available potential energy (APE) in this QG system.
Potential enstrophy,H is defined as:

H = 1

2

∫
v

ρq2 dV (6)

whereq is the perturbation QGPV in the numerical model formulation of (3). The mass
weighted integral of each of the three components ofq (3) will be tracked over time.

Amplitude growth is revealed using this norm:

L2 =
(∫

v

ρϕ2 dV

)1/2

. (7)

SeeHodyss and Grotjahn (2001)for a complete description of these growth measures. The
exponential growth rates ofE, L2, andH are the primary diagnostics used in this study. The
growth rates forE andH asymptote to twice the growth rate of the most unstable normal
mode.
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NG is difficult to assess quantitatively since it can be present even when the growth rate is
below the unstable normal mode value. If the unstable normal mode is but a small fraction
of the total solution then its effect on the total growth rate may be very small allowing small
to moderate NG to dominate the total growth rate. In this case the total growth rate could be
below the most unstable normal mode value but still be dominated by nonmodal processes.
Accordingly, one can only make a somewhat qualitative judgment based mainly upon the
peak growth rate (particularly when it exceeds the most unstable normal mode value). Yet,
qualitative aspects seem appropriate to emphasize here given the approximations in the
models and the use of ICs as archetypes. Also, the importance of NG is assessed in relative
terms by comparing results for an archetype structure found prior to observed cyclogenesis
against an IC with significant NG.

The ratio of instantaneous over asymptotic growth rate at a given zonal wavenumber
defines a parameterΓ . ParameterΓ facilitates comparison of the NG magnitude at differ-
ent scales and between different parameters whereas the actual growth rate (plotted here)
helps identify how the NG alters the growth rates seen at different time and space scales.
ParameterΓ is not singular since the asymptotic growth rate is not zero for any wavenumber
studied here.

3. “Square wave” results

3.1. Introductory comments

A solution that looks like a “checkerboard” pattern of highs and lows is obtained by
assuming the stream function takes the form

ϕ(x, y, z, t) = Φ(z, t) sin(ly)eikx + ∗ (8)

wherek, l are the zonal and meridional wavenumbers, respectively and * represents the
complex conjugate of the preceding term. It is further assumed thatk = l so that the
zero-valued contour line forms a square leading to the terminology “square waves”.

Square waves are justified on three bases. First, square waves are sometimes used as an
improvement upon plane wave solutions while still simplifying or speeding up a calculation.
Second, for a feature localized along the meridional axis, having a circular circulation, the
dominant member of a Fourier decomposition is that member used in the square wave. Fi-
nally, we find similar results for square waves and waves localized along the meridional axis.

One may insert (8) into the linearized QGPVEq. (1)and obtain[
∂

∂t
+ ikU

] (
1

ρ

∂

∂z

(
ρε

∂Φ

∂z

)
− α2Φ

)
+ ik

∂Q

∂y
Φ = 0 (9)

whereα is the absolute wavenumber:α2 = k2 + l2 = 2k2.
It is obvious that the terms in (9) scale differently with wavenumber. Accordingly, in the

G model, or similar variations such as those inGreen (1960), the growing normal mode
solutions become more bottom-trapped as absolute wavenumber (α) increases from the
scale of the most unstable mode. This well-known result strongly influences the projection
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onto the eigenmodes that are present in the ICs emphasized here. For short waves, unstable
normal modes must be significantly augmented by neutral continuum modes in order for
the IC to have significant amplitude in the upper troposphere. In contrast, near the most
unstable wavelength, unstable normal modes have relatively comparable amplitude at upper
and lower troposphere and thus form a greater fraction of the IC.

As described elsewhere (e.g.Grotjahn et al., 1995, Hodyss and Grotjahn, 2001), a sim-
ple conceptual model for NG is the increasingly favorable superposition of constituent
eigenmodes. The eigenmodes of the G model are not orthogonal in the growth measures
mentioned above. Therefore, the superposition and differing phase speeds of the eigenmodes
will induce changes with time in these growth measures. To single out just one factor, the
greater the phase speed difference, the faster the transition is to a favorable alignment of
two modes, and thus the greater the NG. The speed with which the eigenmodes adjust
their relative phase in a favorable manner is dependent upon the relative phase speeds of
the primary constituents (as well as the initial phase shifts). For example, as wavenum-
ber increases beyond the most unstable normal mode, the time needed for a given phase
speed difference between two constituent eigenmodes to shift those eigenmodes one half
wavelength (say) into phase will decrease simply because the wavelength is smaller (mak-
ing NG greater, all else being equal). Ask increases this effect is magnified for general
ICs because the unstable normal mode becomes more bottom-trapped and therefore must
be augmented by more and more neutral continuum modes, which have a relatively wide
range of phase speeds. So, one might anticipate more NG to occur for shorter waves than for
longer waves, if only phase speed (not structure) is the issue. Of course, the precise amount
of NG is not easy to deduce since it depends upon other factors that vary with wavenumber.
Such other factors include the normal mode growth rate spectrum and variations in the
amount of overlap between the eigenmodes. So, one can reasonably expect NG to vary with
the scale of the mode, but the details of the variation are most easily deduced by direct
calculation.

3.2. Time series of growth rates

Fig. 2 displays time series of the growth rates forH, E and theL2 norm for the G
model. Time series for connected and separated ICs are shown. As expected, the solution
asymptotes over time to the growing normal mode.Table 1summarizes some key properties
of the solutions for the connected and separated trough ICs in the G and Eady forms of the
model. The principal results seen inboth models andboth ICs are these.

• The time at which the peak growth rate occurs decreases as the wavelength decreases for
all growth measures.

• The peak NG occurs for wavelengths notably shorter than the most unstable normal mode
for all growth measures.

• In general, the peak growth rate occurs for shorter wavelengths in the amplitude (L2)
norm than in the total energy growth measure (E).

As stated, similar results appear in Eady model runs (not shown). The primary difference
occurs where growing normal modes do not exist at wavenumbers aboveα = 2.4 in the Eady
model. Those short wave Eady solutions show interference effects as discussed byLindzen
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Fig. 2. (a–f) Growth rate time series for the connected (left column) and separated (right column) initial conditions
in the G model. The ordinate is absolute wavenumber (α) and the abscissa is nondimensional time in each chart.
The top row shows potential enstrophy growth rate,σH . The middle row shows total energy growth rate,σE . The
bottom row displays amplitude growth rate,σL2. Locations of peak values and corresponding asymptotic normal
mode growth rates are reproduced inTable 1. Contour interval of 0.1 for the top two rows and 0.05 forσL2. NG
is largest for eigenmodes much smaller than the most unstable normal mode.

et al. (1982). The Eady model growth rates are broadly similar to the G model results shown
in Fig. 2except that after the initial period of strong NG, the growth rates vacillate between
positive and negative values forα > 2.4. The other main difference between solutions from
the Eady and G models is as follows. While theH, E, andL2 growth rate curves have the
same general shape in both models, the peak growth rate and its absolute wavenumber are
larger in the Eady model results.

Calculations with the G model using the separated IC differ from those for the connected
IC in the following ways.
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Table 1
Comparison of peak growth rates found in various growth measures in two versions of the model and for two
initial conditions shown inFig. 1

Eady model G model

Connected Separated Connected Separated

Max σH 0.90 1.26 0.82 0.83
Time 0.99 0.8 1.48 2.40
α 4.5 3.3 3.5 2.5
σA 0.0 0.0 0.38 0.57

Max σE 0.77 0.56 0.81 0.62
Time 0.05 2.64 0.42 10.6
α 4.6 2.3 3.7 2.1
σA 0.0 0.22 0.35 0.62

Max σL2 0.56 0.31 0.62 0.31
Time 0.02 2.11 0.65 10.9
α 4.7 2.5 4.2 2.1
σA 0.0 0.0 0.14 0.31

Data for “square wave” (equal meridional and zonal wavenumbers) solutions are shown. Other data include the
time of occurrence of the peak growth rate (“time”), the absolute wavenumber (α), and the asymptotic growth rate
(σA) for that absolute wavenumber.

• The separated IC has lower peak growth rate inE andL2 than the connected IC at all
wavenumbers; from this result one concludes that NG inE and L2 is also less at all
wavenumbers, not just at the most unstable wavelength.

• The wavenumber having the peak NG is different for each growth measure but in general
occurs at shorter waves for the connected IC.

• There is much less NG in theL2 andE growth measures for the separated IC. However,
sizable NG remains in the potential enstrophy. This issue is noted and examined by
Hodyss and Grotjahn (2001)for plane waves at the most unstable wavenumber.

Again, broadly similar results are found for the Eady model even for waves shorter than
the short wave cut-off. These and other differences are apparent inTable 1.

The ratio of actual growth rate to normal mode growth rate (Γ ) has peak values that are
much larger and occur at much higher wavenumber for the connected than for the separated
case. PeakΓ atα = 5.0 is >3.5 forH, E, andL2 growth measures in the connected cases.
For the separated casesH has peakΓ ∼ 2.5 atα = 5.0, while for L2 peakΓ = 1.5 at
α = 4 andΓ < 1 for E at all values ofα.

Additional understanding of theH growth rates is gained from looking at the components
of H. The components ofH undergo noteworthy differences in theirindividual rates of
growth. For both ICs, BPV is initially quite small and undergoes a rapid growth and structural
change to adjust to the profile of the normal mode. The large growth of BPV seen inFig. 3a
and doccurs very early in each simulation. This reflects the rather arbitrary definition of
IC using analytic functions. As discussed inHodyss and Grotjahn (2001)relatively small
adjustments in the initial stream function distribution (that cause BPV to differ less from
a normal mode BPV profile) cause significant lowering of the peak growth rate. The Eady
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Fig. 3. (a–f) Similar toFig. 2except for components of potential enstrophy in G model simulations. Growth rates
for BPV squared (top row) using a 0.25 contour interval. Growth rate of TV squared (middle row) uses a 0.1
contour interval as for potential enstrophy (Fig. 2a and d). The growth rate for RV squared is simply twice the
values shown forL2 (Fig. 2c and f). The ratio of domain average RV over domain average TV is shown (bottom
row) with a 0.1 contour interval.σBPV andσTV have large NG for very short waves but RV moderates the NG
seen inσH .

model BPV growth is due to growth along the top and bottom boundaries, but in the G model
only the lower boundary is relevant (due to mass weighting). The maximum growth in BPV
in Fig. 3doccurs at the same wavenumber and has nearly exactly the same magnitude as
that in the Eady model and the overall pattern for all wavenumbers is nearly the same in
the Eady model at early times. Of particular note are very large growth rates at very early
times. In contrast, the thermal vorticity has small or negative growth rates initially and
needs some time to reach peak values (Fig. 3b and e). For the connected IC, TV is initially
decaying (forα > 2.2) as might be expected for a solution that is mainly tilting into a more
vertical orientation early on in the integration. (TV is proportional to the vertical derivatives
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of stream function and those in turn are proportional to the amount of vertical tilt for the
connected case). This initially negative growth increases with decreasing scale. Maximum
NG (in Fig. 3b and e) is considerably less than that found in the Eady model (not shown).
However, the Eady model solution does have the same general pattern for both ICs. The
combination of BPV and TV growth rates is broadly consistent with a peakH growth rate
that occurs earlier than the peak for TV but later than that for BPV. Finally, the BPV and
TV peak growth rates occur at higher wavenumbers than the range of wavenumbers plotted.
But, peakH growth occurs well within the range of wavenumbers plotted. TheH growth
rate spectrum does so because the fraction due to RV (early on) dramatically increases with
wavenumber (Fig. 3c and f). The growth rates of RV are exactly twice the values ofL2
shown inFig. 2c and ffor this model formulation. Thus for largeα, H is mainly RV, RV
growth rates decrease with higher wavenumbers, and so do growth rates ofH.

The spectrum of total energy growth rates can be understood better by examining growth
rates of KE and APE components ofE. Growth rates of APE are shown inFig. 4a and c;
sizable oscillations of APE growth occur for short waves. Similar to TV, the largest growth
rates occur after a period of small or negative growth rates for the short waves. Also, the peak
APE growth rates occur for shorter scales than those plotted. At the largest wavenumber
shown (α = 5.0) the peak value ofΓ is 4.0 for the connected IC and 3.25 for the separated
IC. In contrast, for middle wavenumbers (1< α < 3.5) little NG is evident in separated
ICs. There is more NG in the connected case APE for wavenumbers 1< α < 3.5 butΓ
remains close to 1.0 throughout the time integration. Growth rates of KE have the same
distribution (but twice the amplitude) as those ofL2 (Fig. 2) and so are not shown. Instead,
the ratio of KE over APE is shown inFig. 4b and d. The asymptotic spectrum of this ratio is
nearly constant at small wavenumbers and approaches zero as the wavenumber approaches
zero. However, early in the integration it is clear that KE is a larger fraction ofE than is APE
for short waves. Consequently, the pattern forE is strongly influenced by the growth of KE
for short waves at early times. Since KE andL2 have the same growth rate pattern, theL2
andE growth measures (Fig. 2) have similar growth rate time series for short wavelengths.

4. Meridionally free solutions

4.1. Introductory comments

In the previous section, meridional structure is specified by a single wavelength Cosine
function in the meridional (y) direction. In this section, the initial disturbance has a Gaussian
variation in they-direction. The Gaussian structure function is expressed spectrally using
32 Fourier modes in they-direction. The zonal direction remains a single wavenumber. The
length scale in they-direction is defined by setting one e-folding length toL/5, whereL is the
zonal wavelength. The resultant IC looks like a chain of highs and lows in the zonal direction
only, with each high and low looking approximately like a square wave. The solutions are
obtained numerically in a very large channel whose width is scaled to be at least four times
the meridional scale as defined above. The disturbance is initially centered in the channel.
The (initial) absolute wavenumbers examined vary from 0.1 to 5. Solutions for the Eady and
G models use the same basic-state as before;U has vertical shear and no horizontal shear.
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4.2. Time series of growth rates

Direct comparison with square waves could be attempted by plotting growth rate spectra
using the initial absolute wavenumber (approximately the square root of two times the zonal
wavenumber) for the ordinate. Since meridional scale is now allowed to change over time,
the comparison will break down after a period of time. Such plots are not shown because
they look very similar toFigs. 2–4. (Similar figures, using zonal wavelength, can be found in
Hodyss, 1999). Nonetheless, a few noteworthy differences from the square wave solutions
occur as follows.

• Peak growth rates (and presumably the strongest NG) occur at even smaller scales.
• Peak growth rates (and hence NG) are larger (in some cases by >35%) for the Gaussian

IC.
• The asymptotic growth rates are larger now (especially for zonally short waves) because

meridional scale increases over time (for middle and short waves) the dominant absolute
wavenumber decreases, which for short waves means larger growth rate.

4.3. Emergence of horizontal tilts

Allowing the meridional structure to evolve leads to interesting changes in the horizontal
structure that are not present in the square wave results. So, horizontal structure evolution
will be emphasized in this section. The two main differences created by allowing meridional
structure to evolve are: (1) the horizontal scale changes over time and; (2) zonal mean eddy
momentum fluxes develop. The former is easily explained by the emergence of the more
unstable modes. The latter depends upon the phase shifts and phase speeds of the primary
constituents at any one time.

Before discussing the specific solutions it is useful to consider how horizontal tilts may
occur even though there is no horizontal shear in the basic flow. None of the eigenmodes
present has any horizontal tilt. The horizontal tilts occur in the total solution when there
is overlapping of eigenmodes having different meridional wavenumber and different zonal
phase. Simple examples are illustrated inFig. 5. Both archetype ICs are composed of many
eigenmodes including continuum modes having sizable amplitude. But, the asymptotic
structure is dominated solely by the most unstable normal mode. At intermediate times,
the solution is typically dominated by just a few of the more unstable normal modes. This
“intermediate” time period can be quite lengthy given the initial projections of the unstable
modes and a growth rate spectrum whose most unstable modes can have similar growth
rates. The actual structure during the intermediate time can vary greatly depending upon the
eigenmodes present and their phase relationships. However, one may isolate a few general
factors that influence the structure seen:

1. The initial relative phase and projection of the eigenmodes that are more unstable.
2. The amount of upstream tilt with height for each eigenmode (upstream tilt decreases

with decreasing growth rate).
3. The phase speed spectrum governing how the eigenmodes separate from an initial phase

relation (It is a function of meridional wavenumber,l for given k in the G model). In
contrast, the Eady model has the same phase speed for all unstable normal modes.
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Fig. 5. Schematic diagrams illustrating how two unstable eigenmodes, each without horizontal axis tilts, produce
horizontal tilts when combined. Eigenmode maxima and minima are indicated with+ and− symbols, respectively.
The more unstable mode is depicted with solid+/− symbols while “hollow” symbols are used for the less unstable
mode. Relative phases between eigenmodes as well as the upstream tilt can be deduced from the+/− symbols. A
solid contour indicates the resultant sum, with dashed lines indicating horizontal trough axes. “Back” tilted troughs
appear in (a) and “forward” tilts in (b). Two situations are depicted. (a) and (b) illustrates how horizontal tilts vary
with height since less unstable eigenmodes have less upstream tilt. This situation is more likely for middle zonal
wavelengths. The “back” tilted trough (a) has non-zero zonal mean eddy momentum convergence; the “forward”
tilted trough (b) has eddy momentum divergence. The situation depicted in (c) and (d) is more typical of short zonal
wavelengths where less unstable modes are strongly bottom-trapped. So, the upper-level (c) has no significant
contribution from the less unstable mode and often develops a larger meridional scale more quickly than the lower
level (d) portion of the perturbation. Other combinations are possible as discussed in the text.

4. The vertical structure of the eigenmodes’ amplitude (e.g. inFig. 5dshorter waves are
more bottom-trapped and so have less impact at upper-levels).

Item 1 selects the main eigenmodes to interact at an intermediate time. Since the IC is
symmetric abouty = 0, asymmetric unstable modes are excluded. Items 2 and 3 can lead
to the development of horizontal tilt. Items 2 and 4 lead to structures that look different at
upper and lower levels.

The growth rate spectrum varies such that the most unstable waves have an absolute
wavenumber near 2. Consequently, for longer waves (k < 1 or zonal wavelength >6000 km
in our scaling) the most unstable wave hasl > k. For shorter waves (k > 2, say) the merid-
ional structure is much larger than the zonal structure for the most unstable modes. Hence
shorter zonal wavelengths asymptotically develop large meridional scale over time. For a
specifiedk (>1.5), waves with smaller meridional scale (i.e. larger absolute wavenumber)
have smaller growth rate, are more bottom-trapped, and have less upstream tilt. Therefore,
for zonally short waves, the meridional scale increases more rapidly at upper-levels than at
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Fig. 6. Phase speeds of some selected growing normal modes in the G model. The scaling assumed hask = 1.0
for 6000 km,k = 1.6 for 4000 km, andk = 3.1 for 2000 km zonal wavelength. Phase speeds of relevant unstable
modes tend to decrease with increasing meridional wavenumber for short zonal waves and increase for long zonal
waves.

lower levels because only waves with large meridional scale have significant upper-level
amplitude.

Observations show increasing meridional and zonal scale of surface lows (Grotjahn et al.,
1999) as they develop; but upper-level troughs (Grotjahn and Castello, 2000) do not change
scale since they start out large. Also relevant may beHartmann et al. (1995)who find
synoptic scale waves can rapidly develop from much smaller scale singular vectors.

The phase speed spectrum of themore unstable waves varies differently for short than for
long zonal wavelengths.Fig. 6illustrates how phase speed varies for a few selected merid-
ional structures. For zonally short waves (k > 2.5) small meridional scale eigenmodes tend
to move slower than longer meridional scale eigenmodes. If all else is equal, eigenmodes
that are in phase will start to separate and their sum develops horizontal tilts similar to
Fig. 5b. For longer waves (k < 1.3) eigenmodes with small meridional scale tend to move
faster than eigenmodes with longer meridional scale. Eigenmodes initially in phase separate
to form a sum similar toFig. 5a. For intermediate waves (k ∼ 2) the phase speed is similar
for eigenmodes of different meridional scale.

The normal mode amplitude for “middle” wavenumbers (k ∼ 2) has maxima near the
surface and near the simulated tropopause. As mentioned, unstable shorter waves emphasize
the surface maximum more and more as absolute wavenumber increases. Unstable long
waves emphasize the upper maximum.

Fig. 7shows a time progression of the perturbation pressure field at two levels using the
separated IC. The two general changes in eddy structure are seen in this sequence. First, the
solution evolves towards a much larger meridional wavelength (commensurate with the most
unstable mode present). Second, the “square” wave type of IC quickly develops “bean-like”
shapes; these horizontal axis tilts imply eddy momentum fluxes that have non-zero zonal
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Fig. 7. (a–e) Example time sequence of upper (z = 1) and lower (z = 0) level eddy pressure fields illustrating the
development of horizontal tilts and increasing meridional scale. Results are shown for a short wave (k = 3.1) in
the G model using Gaussian meridional structure and separated trough initial condition. As the timet = 2 results
show, the tilts can reverse direction with height. The tilts evolve as the most unstable normal mode emerges. The
contour interval varies between the plots and was chosen to make a similar number of contours each time and
thereby make the horizontal axis tilts more visible.

means. The nature of the tilts shown at timet = 2 happen to have zonal mean momentum
convergence at upper-levels and momentum divergence at lower levels. However, the type
and amount of tilt varies with the wavenumber, IC, and model used. For example, the total
solution for ax wavelength of 7000 km in the G model has very similar appearance at time
t = 2 to that shown inFig. 7b(a 2000 km wavelength solution). The sequence also shows
that the tilts can vary during the course of the integration. Accordingly, it is difficult to
generalize about the nature of the horizontal tilts; however,in the cases investigated here
eddy momentum convergence structures appeared much more often. This result suggests
that phase speed decreasing with meridional wavelength (for fixedk) could be a dominant
factor. For middle wavenumbers (k ∼ 2) the separated IC tends to develop and maintain
momentum converging tilts at upper and lower levels; also, the meridional scale increases
more rapidly at upper-levels (e.g.Fig. 8b). The connected trough IC for middle waves leads
to similar horizontal tilts, though the upper-level increase in scale develops more slowly.

In studies of “realistic” jet flows it seems most common for the eddies to develop “tilted
back” structures. This is seen in eigenvalue studies (e.g.Frederiksen, 1979; Grotjahn, 1979)
and in initial-value studies (e.g.Simmons and Hoskins, 1979; Grotjahn and Castello, 2002).
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Fig. 8. Depiction of how the tilted structure is reconstructed from a small number of unstable eigenmodes. Results
are shown for the G model for a middle zonal wavelength (k = 1.6) using the separated initial condition. (a) and
(b) are the total solution at timet = 4 at upper and lower troposphere, respectively. (c) and (d) are a reconstruction
of (a) and (b) using the five unstable normal modes present having the largest projection amplitudes. The mode
with largest projection (the most unstable) is shown in (e) and (f) at upper and lower levels. The mode with second
largest projection (g) and (h) is also shown. The less unstable mode has less upstream tilt and less upper-level
amplitude than the most unstable mode. So, the horizontal tilt and upper scale are larger at upper-levels (c).

As stated above, the tilt that develops varies with the case studied. So, it is unclear how
important the overlapping of eigenmodes here is compared to horizontal shear in creating
horizontal tilts. Our results can only suggest that an IC that differs from a single normal
mode will likely develop horizontal tilts. It may be that “tilted back” horizontal axes are
favored by both mechanisms, but further work is needed to establish that conclusion for
mean-flow jets.

Interpretation of the horizontal tilts seen (e.g.Fig. 7) is facilitated by decomposing the
total solution into a few key eigenmodes at an intermediate time. The total solution at
that time can be approximately reconstructed from just a few unstable normal modes. The
horizontal tilt seen in the reconstruction and in the total solution can be deduced when these
few modes are separately plotted with proper relative phase. The relative phase between
these normal modes is thereby easily seen to create the “bean-like” pattern of the total



D. Hodyss, R. Grotjahn / Dynamics of Atmospheres and Oceans 37 (2003) 1–24 19

solution. The smaller upstream tilt for less unstable modes is also apparent. The amplitude
and phase of each eigenmode are found by projecting each mode onto the total solution.
For the middle wave (4000 kmx range;k = 1.6) the modal composite is constructed from
five of the nine most unstable normal modes.Fig. 8 illustrates such a diagnosis of the total
solution at timet = 4 for k = 1.6. Fig. 8 includes plots of the two normal modes having
the largest projection amplitudes.

The Eady model solution for the connected trough IC (and middle wavelengths) develops
and maintains tilts similar toFig. 7bfor times aftert = 2. The horizontal tilts are maintained
at both levels, but the meridional scale increases. The persistence of these tilts occurs because
this IC has 13% smaller projection onto the most unstable mode than the projection onto the
next most unstable mode present. The respective nondimensional growth rates are 0.30 and
0.21 and the phase speeds are identical. Consequently, the eigenmodes maintain the same
relative phase and it takes >10 units of time for the most unstable solution to dominate. The
more unstable mode (having larger meridional structure) has larger upstream tilt than the
next most unstable mode. The two unstable modes match phase at the middle elevation (z =
0.5). Belowz = 0.5 the more unstable mode is ahead andvice versa above. The horizontal
tilts described here occur even sooner in the Eady model when using the separated IC.

4.4. An application to upper-level PV anomalies

In this section we analyze the scale-dependent behavior of upper-level PV anomalies as
an extension toHakim (2000b). Hakim (2000b)deduced a variety of important results about
the upper-level initiation of cyclogenesis by PV anomalies, but he had very little discussion
of the scale-dependent behavior of the PV anomalies or the time series of their growth rates
as a function of wavenumber. We intend here to fill this gap while also using the more
realistic G model.

We will model upper-level precursor disturbances riding along the tropopause as a QGPV
anomaly with the following functional form:

q = sin(kx)
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z − 1

µz

)2
]}

(10)

whereµz = 0.35 andµy is chosen asL/5, whereL is the zonal wavelength. These defini-
tions are consistent with the meridionally unconfined section andHakim (2000b). Recall
that the horizontal scale defined here is only theinitial horizontal scale (αi = initial total
horizontal wavenumber); the dominant horizontal scale can change as the model integrates
forward in time and typically increases. The scale change and horizontal tilts discussed
above occur here too and will not be discussed further. Note that horizontal scale is de-
fined now as the scale of the QGPV anomaly and not that of the anomaly in the pressure
field.

The inversion of (10) into the pressure field results in different structures for different
horizontal scales. Because large horizontal scales weight relative vorticity less than thermal
vorticity the inversion of (10) results in a pressure field with little vertical structure for large
horizontal scales. This can be seen inFig. 9a. Note thatHakim (2000b)did not include
a stratosphere and therefore only included the portion of the IC up toz = 1. In Fig. 9a
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Fig. 9. G model results for an upper-level QGPV anomaly riding along the tropopause. In (a) is shown the initial
vertical structure of the QGPV anomaly inverted into the pressure field for two initial horizontal wavenumbers.
The ordinate is vertical heightz and the abscissa is normalized amplitude. In (b), (c), and (d) is plotted the time
series of the growth rate forH, E, andL2, respectively. The ordinate isinitial absolute wavenumber (σ i ) and the
abscissa is nondimensional time in each chart. In (b)σH is plotted from−12.8 to 36.4 by 0.2, in (c)σE is plotted
from −0.3 to 0.8 by 0.05, and in (d)σL2 is plotted from−0.28 to 0.4 by 0.04.

is plotted the amplitude variation in the pressure field for (10) at two different horizontal
scales. Forαi = 1 the vertical structure of the IC in the pressure field is much less vertically
localized than forαi = 5. The vertical structure forαi < 1 has almost no noticeable varia-
tion with height. We conclude then that small-scale upper-level QGPV anomalies produce
localized upper-level pressure anomalies but large-scale upper-level QGPV anomalies pro-
duce uniform vertical troughs. This property of (10) will have a profound effect on the time
series of the various growth measures.

In Fig. 9bis seen the time series of the growth rate forH. The maximum growth rate inH
is extremely large (σH = 36) and occurs at the largest horizontal scales. As discussed above,
this is because the largest horizontal scales are associated with a uniform vertical trough
that has very little initial BPV. As discussed inHodyss and Grotjahn (2001)the growth rate
of H is highly sensitive to the growth in BPV and the growth of BPV is very large for ICs
with little amplitude variation with height. However, for horizontal scales more associated
with typical cyclogenesis (αi ∼ 2) there is little apparent NG inH. Also, in distinction to
our previous results with the connected and separated ICs there is very little NG for the
shortest horizontal scales.

In Fig. 9c is seen the time series of the growth rate forE. This growth measure has
maximum NG at large horizontal scales too. This is due to the growth in APE dominating
that of KE because KE is small for large horizontal scales. However, like the time series
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for H there is very little NG at horizontal scales typically associated with cyclogenesis. For
αi > 3 there is actually large initial decay inE before growth in this measure begins.

In Fig. 9dis seen the time series of the growth rate forL2. The growth rate time series
for L2 shows the least NG of any of the growth measures shown inFig. 9. At all horizontal
scales shown inFig. 9 the growth inL2 shows very little growth until aboutt = 5. This
growth aroundt = 5 appears to be associated with the emergence of the most unstable
normal mode. The large NG at large horizontal scale is very much reduced. There is large
negative growth inL2 at short horizontal scales, which suggests that the large negative
growth inE at short horizontal scales is likely due to large negative growth in KE.

5. Conclusions

This report considers how the relative importance of nonmodal growth (NG) and un-
stable normal mode growth varies with the scale and structure of the cyclone. Since an
observed cyclone usually has the same length scale in the meridional and zonal directions,
initial conditions (ICs) used here also have similar length scales in these two directions. In
simulations labeled “square waves” the zonal wavenumber (k) and meridional wavenumber
(l) are equal throughout the integration. In “meridionally free” integrations, the meridional
structure is free to evolve. The initial vertical structure is defined by one of two ICs.

Each IC is an archetype for a broader class of ICs. One IC has troughs and ridges of
uniform amplitude tilted upstream with height in the troposphere. The other IC has separate
troughs and ridges in lower and upper troposphere and all are without upstream tilt. The
former IC is labeled “connected” and has been shown to have large NG in prior studies. The
latter IC, labeled “separated”, is more similar to observed troughs prior to cyclogenesis. The
“G” model is a linear, quasi-geostrophic model that allows compressibility, realistic static
stability, and linear Coriolis parameter variation. Further approximations may be introduced
to obtain “Eady” model simulations.

The NG mechanism becomes more prominent for short waves. This result is seen in
all the growth rates tracked: potential enstrophy, energy, and their components, as well
as amplitude. The peak growth rates occur for short zonal wavelengths. Since the normal
mode growth rates are small at these scales, these peak values (and hence NG) exceed the
asymptotic value by a much larger percentage than for middle wavelengths. (The asymptotic
value is dictated by the most unstable normal mode present.) These results are seen for
both ICs and in both Eady and G model formulations. Similar results are found when the
meridional structure is free to evolve from a Gaussian IC having a meridional scale chosen to
correspond to the zonal scale. The peak growth rates of boundary potential vorticity (BPV),
“thermal” vorticity (TV), and available potential energy (APE) all tend to occur at very large
zonal wavenumber. Peak growth rates of total energy (E) and potential enstrophy (H) occur
at much longer scales in part due to the moderating influence of the amplitude growth rates.
The amplitude norm (L2) has peak growth rate at a middle wavelength for the separated
IC. For the connected IC,L2 and KE have large initial growth for small waves but that
is opposed by the APE which has initially negative growth rate as upstream tilt decreases
early on. Amplitude growth is relevant since the pattern is equivalent (with values twice
as large) for relative vorticity (RV) and KE. Early on, RV and KE are large fractions ofH
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andE, respectively, for these shortest waves. The primary difference for the ICs is that the
peak growth rates are systematically less for the separated IC atall wavenumbers.Grotjahn
and Tribbia (1995)found the separated IC to have less NG when they considered only the
most unstable wavelength (and a single meridional scale). Here, we find this result to be
generally valid for the wavenumbers tested, even when meridional structure is allowed to
freely evolve.

When the solutions are allowed to freely evolve in the meridional direction the merid-
ional scale changes and horizontal tilts develop even though there is no horizontal shear
in the mean-flow. The scale changes commensurate with the emergence of the most un-
stable mode. For middle and short zonal wavenumbers, the meridional scale of the most
unstable mode is much larger than the zonal scale. Presumably, introduction of meridional
shear (forming an internal jet) could remove much of this meridional scale change. If the
basic-state has meridional shear, such shear introduces a meridional length scale into the
problem. That meridional shear would cause the most unstable normal modes to prefer a
similar meridional length scale and thereby oppose some of the meridional scale increase
found here. Eigenmodes for basic flows having across-flow shear have horizontal tilts. How-
ever, the mechanism that generates the tilts seen here still applies. It is beyond the scope of
this study to examine how the two sources of horizontal tilt would compare.

Despite the lack of basic-state horizontal shear, eddies develop horizontal tilts when the
solutions are allowed to evolve freely in the meridional direction. Such tilts imply non-zero
zonal mean eddy momentum convergence (“tilted back”) or divergence (“tilted forward”)
depending upon the orientation (e.g.Figs. 4 and 9, Grotjahn, 1993). While “tilted back”
patterns are more common in these integration’s, examples of forward tilts occur. It is
not difficult to find instances of opposite tilts at upper and lower levels. These solutions
are diagnosed by projecting the total solution onto the linear eigenmodes. At intermediate
times, much of the total solution is captured by a few of the most unstable eigenmodes
having the largest projections. Such analysis makes clear that the overlapping of these
eigenmodes having different relative phases leads to the horizontal tilts. The structure that
develops depends upon three things: how phase speed varies with the meridional scale
of each mode present, the amount of upstream tilt with height each mode has, and the
amplitude variation with height of each mode. In general, the shorter waves tend to develop
“forward” tilts at lower levels (creating zonal mean eddy momentum divergence). Short
wave forward tilts are consistent with the phase speed spectrum, which decreases for less
unstable and more bottom-trapped eigenmodes. The situation is different for intermediate
waves. Intermediate waves have horizontal tilts that sometimes reverse between upper and
lower troposphere. In our results, intermediate waves develop “back” tilts most frequently
(especially at upper-levels).

The horizontal tilts are transitory, but “back” tilts of intermediate waves could be self-
reinforcing. Such tilts create zonal mean eddy momentum convergence that forms a weak
jet along the meridional center axis of the eddies. Even early studies (e.g.Grotjahn, 1979in
Cartesian geometry;Simmons and Hoskins, 1977in Spherical geometry) find that eigen-
modes for an internal jet have “back” tilts.

Cyclogenesis is typically associated with upper-level PV structures riding along the
tropopause. We simulate this type of precursor disturbance with an isolated upper-level
QGPV IC similar toHakim (2000b). This IC, when inverted into the pressure field, results
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in a vertically isolated pressure anomaly for short horizontal scales and a nearly uniform ver-
tical trough for large horizontal scales. This illustrates an important property that one must
be aware of when examining ICs in initial-value simulations. Fixing the structure of a spe-
cific QGPV anomaly and varying its horizontal scale results in differing vertical structures
in the pressure field at each of those horizontal scales. The converse is also true and applies
directly to the present study; fixing the vertical structure in the pressure field and varying
the horizontal scale results in different QGPV structures at different horizontal scales.

At horizontal scales typical of cyclogenesis, upper-level QGPV anomalies in the G model
have little NG inE, H, andL2. There is large NG at very long horizontal scales inH and
E. This is due to the vertical structure of the IC at long horizontal scales being that of
a uniform vertical trough. As discussed inHodyss and Grotjahn (2001)ICs with little
amplitude variation with height (e.g. uniform vertical troughs) have largeE andH growth
rates because these ICs have little BPV, TV, and APE initially but unstable normal modes
typically have large values of these parameters. Therefore, the transition through time as
the solution changes from a uniform vertical trough into that of the unstable normal mode
will generally result in largeE andH growth rates.

Our results for upper-level QGPV anomalies show much less NG than the results of
Hakim (2000b). Hakim (2000b)examines an initial QGPV anomaly with a horizontal scale
by our definition of approximatelyαi = 2.6. Our results and Hakim’s both show very
little NG in the L2 norm. However, Hakim finds moderate NG in bothE and H while
at αi = 2.6 our results show no NG. This is presumably due to the substantial model
differences between our two studies. For example, Hakim uses the Eady model whereas
we are using the more realistic basic-state (including a stratosphere) associated with the G
model. Another important difference is Hakim’s IC is localized in thex-direction and ours
is constrained to be sinusoidal with a single wavenumber in thex-direction. Because of this
lack of constraint Hakim’s IC develops a large upper-level ridge out ahead of the initial
trough (see hisFig. 1). The development of large growth rates inE andH could be due in
part to the emergence of new features, which are not allowed to develop in our study.
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