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I  ntroduction: There is a long tradition of using statistical methods 
based on extreme value theory to estimate the probability of, or 

return levels for, extreme weather and climate events (Gumbel 
1958). Because only a single static probability distribution is 
used, these methods can be termed unconditional extreme value 
analysis. In recent years, at least a few papers have made use of 
statistical methods based on extreme value theory to detect trends 
in the frequency and intensity of extreme weather and climate 
events; that is, allowing the extremal distribution to gradually 
shift over time (Brown et al. 2008).

Only rarely have extreme value distributions for weather and 
climate extremes been fitted conditional on indices of atmospheric 
or oceanic circulation, whether climate modes such as the El Niño-
Southern Oscillation phenomenon or large-scale meteorological 
patterns (LSMPs) (Brown et al. 2008). Because the extreme 
value distribution randomly shifts depending on the value of the 
circulation index, such methods could be termed conditional 
extreme value analysis. Using time series of daily maximum 
temperature for a set of stations in the California Central Valley, we 
will demonstrate how indices of LSMPs can be incorporated into a 
conditional extreme value analysis for high temperature extremes.

Unconditional extreme value analysis: Classical extreme value 
analysis involves single (or static) probability distributions (i.e., that 
do not evolve over time). The Extremal Types Theorem, based on 
the concept of “max stability,” states that the limiting distribution 
of the maximum of a sequence of random variables, suitably 
normalized, is the generalized extreme value (GEV) (Coles 2001). 
Here, as we shall see, the sequence of random variables need not 
be temporally independent. Further, conditional extreme value 
analysis (to be discussed next) provides one avenue for relaxing the 
assumption that the random variables be identically distributed.

The GEV distribution has three parameters: (i) a location parameter 
that centers the distribution; (ii) a scale parameter that governs 
the spread of the distribution; and (iii) a shape parameter that 
governs how rapidly the upper tail of the distribution decays (by 

convention, a negative shape parameter indicates a bounded upper 
tail as would be anticipated for daily maximum temperature). The 
block maxima approach to unconditional extreme value analysis 
entails fitting the GEV distribution to observed maxima (e.g., 
seasonal highest daily maximum temperature).

An alternative to the block maxima approach, potentially more 
informative and more powerful, is the peaks over threshold 
(POT) approach (Coles 2001). This approach entails the statistical 
modeling of the two most basic components of extremes: (i) the 
rate of occurrence of an extreme event (e.g., exceeding a high 
threshold); and (ii) the intensity of a given extreme event (e.g., 
the excess over a high threshold or by how much it is exceeded). 
The so-called Law of Small Numbers implies that the frequency 
of occurrence of sufficiently rare extreme events should have 
approximately a Poisson distribution, and extreme value theory 
implies that the excess over a sufficiently high threshold should 
have approximately a generalized Pareto (GP) distribution (Coles 
2001). The Poisson distribution has a single rate parameter that 
equals both its mean and variance, and the GP distribution 
has two parameters: (i) a scale parameter that governs the 
“size” of the excesses; and (ii) a shape parameter with the same 
interpretation as that of the GEV distribution.

Conditional extreme value analysis: The basic idea of conditional 
extreme value analysis is to allow the extremal distribution to be 
dynamic; that is, shifting depending on the observed value of an 
index of a climate mode or of an LSMP. For example, Sillmann 
et al. (2011) analyzed the lowest winter temperature at grid 
points in Europe for a reanalysis product and for climate model 
simulations. The GEV distribution was fitted conditional on the 
value of an index of North Atlantic atmospheric blocking, with 
the location and scale parameters varying as functions of the 
index. In statistical terminology, the conditioning variable (e.g., a 
blocking index) is called a covariate.

Similarly, the distributions in the POT approach can be 
conditioned on an LSMP index. In our application to California 
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temperature extremes, the log-transformed rate parameter of the 
Poisson distribution and the log-transformed scale parameter 
of the GP distribution will both be varied as linear functions 
of an LSMP index (the logarithmic transformation is applied 
to constrain the parameters to be positive), with the shape 
parameter of the GP being held constant. 

Application to California temperature extremes: The climate data 
consist of time series of daily maximum temperature at three sites, 
Bakersfield, Fresno, and Red Bluff, in the California Central Valley 
during the summer season, 16 June to 15 September, over the time 
period 1951-2005. As a measure of how extreme the temperature is 
over the entire valley, we extracted the single highest temperature 
each day. Despite the considerable distances among these three 
sites, the climatological distributions of summer daily maximum 
temperatures are quite similar. So the valley-wide temperature 
extreme is not dominated by a single site.

The LSMP index is discussed in detail in Grotjahn (2011). Briefly, 
the index is defined by a multi-step process that begins by choosing 
“target dates.” The target dates satisfy a set of criteria for the extreme 
event type of interest; here, each date (or first of consecutive dates) 
is when all three stations spanning the California Central Valley 
have surface maximum temperature anomaly at least 1.7 standard 
deviations above normal. These dates happen about 1% of the time. 
The target dates form an ensemble for each upper air field. Ensemble 
averages are formed of anomalies of temperature at 850hPa and 
meridional wind at 700hPa. These ensemble averages are the 
LSMPs referred to in the present paper and shown in Grotjahn and 
Faure (2008). The LSMPs have highly significant ridges and troughs 
spanning the North Pacific and across North America, where 
significance is determined by bootstrap resampling: comparing the 
ensemble mean to randomly drawn ensembles at each grid point. 
Consistency between the ensemble members is assessed using 
“sign counts” such that only select areas of the ensemble averages 
(where all members of the ensemble have the same sign) are used 
to calculate an unnormalized projection. Those select areas sample 
the significant ridges and troughs of the LSMPs. Finally, the daily 
LSMP index is a weighted average of those projections of the target 
ensembles onto each corresponding daily field. The weighting is 
chosen to optimize when index values exceed a threshold on dates 
matching target dates over the 1979-1988 training period. Hence, 
the index estimates how strongly and how similar each day’s upper 
air fields are to the LSMPs during prior extreme events.

Fig. 1 shows a scatterplot of the highest daily maximum temperature 
over the California Central Valley versus the LSMP. The horizontal 
line on the scatterplot indicates a threshold of 110.5 °F to be used in 

the extreme value analysis. Diagnostics (Coles 2001) indicate that 
this threshold is sufficiently high to provide an adequate fit of the 
GP distribution to the temperature excesses. The overall scatterplot 
suggests a strong relationship between the index and temperature. 
Nevertheless, our focus is on the points above the threshold for 
which the nature of the relationship is less clear.

To account for the marked temporal dependence of daily 
maximum temperature at high levels, the data have been 
declustered. That is, if the temperature exceeds the high threshold 
(in our case, 110.5 °F) on two or more consecutive days, only the 
single highest temperature within the cluster is used. This type 
of adjustment is termed “runs declustering” with declustering 
parameter r = 1 (Coles 2001). In other words, each extreme event 
actually corresponds to a run of consecutive days on which the 
maximum temperature exceeds the threshold, typically called a 
hot spell in the climate literature. 

For simplicity, the LSMP index for the single day on which 
the cluster maxima occurs is used as a covariate. All of 
the statistical analysis was performed using functions in 
extRemes, an open source R package (Gilleland and Katz 2011).  
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Fig. 1 Scatterplot of highest daily maximum temperature over 
California Central Valley (among Bakersfield, Fresno, and Red 
Bluff) versus an atmospheric circulation index, 16 June to 15 
September, 1951-2005. Horizontal red line indicates threshold of 
110.5 °F used in extreme value analysis.
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Fig. 2 summarizes the results of applying the POT approach to 
statistically model the relationship between the highest daily 
maximum temperature in the California Central Valley and the 
LSMP index during the summer season.

The top diagram in Fig. 2 shows the fit of a Poisson distribution 
to the rate of clusters of daily maximum temperature exceeding 
the threshold, where the log-transformed rate parameter is 
assumed to be a linear function of the LSMP index. To aid in 
visualizing the goodness-of-fit, a locally smoothed version of the 
scatterplot is also included. The fitted statistical model clearly 
captures the nature of the nonlinearity in the relationship. 
Further, a likelihood ratio test (Coles 2001), comparing the fit of 
the statistical model with the LSMP index as a covariate to the fit 
of a single Poisson distribution, yields a P-value of virtually zero 
(i.e., overwhelming statistical significance).

The bottom diagram in Fig. 2 shows the fit of a GP distribution 
to the excess in cluster maxima over the high threshold, where 
the log-transformed scale parameter is assumed to be a linear 
function of the LSMP index. For simplicity, only the estimated 
median of the GP distribution is shown. It rises nonlinearly with 
the LSMP index, but the high degree of scatter makes it difficult 
to assess the nature of this relationship. Nevertheless, a likelihood 
ratio test (Coles 2001), comparing the fit of a GP distribution with 
the LSMP index as a covariate to the fit of a single GP distribution, 
yields a P-value of about 0.002 (i.e., strong statistical significance).

It should be noted that the LSMP index was constructed on the 
basis of the examination of atmospheric circulation patterns on 
extreme hot days in the Central Valley, using 10 out of the 55 years 
of data analyzed in the present paper. So these statistical tests of 
significance should be viewed as a confirmation of the utility of 
the index, not as an independent analysis.

Discussion: Our analysis has focused on high temperature 
clusters, where the definition of a cluster is based on statistical 
considerations. Hot spells or heat waves may have more complex 
definitions that are more meteorologically meaningful (e.g., a heat 
wave would not necessarily end with the maximum temperature 
falling below the high threshold for only one day; Meehl and 
Tebaldi 2004). Further, other characteristics of hot spells or 
heat waves, including the cluster length, should be statistically 
modeled as well. Initial attempts to do this include Furrer et al. 
(2010), which included trend components in a statistical model 
for hot spells or heat waves, and Photiadou et al. (2014), which 
included conditioning on indices of atmospheric blocking and 
climate modes in a similar form of statistical model.

Fig. 2 Top diagram shows rate parameter of Poisson distribution 
(red curve) fit to occurrence of cluster of temperatures exceeding 
threshold of 110.5 °F (black dots: value of “1” indicates 
occurrence, “0” non-occurrence) with log-linear relationship to 
atmospheric circulation index and blue dots giving corresponding 
empirical rate of threshold exceedance. Bottom diagram shows 
median of GP distribution (red curve) fit to excess in temperature 
over threshold for cluster maxima (blue dots) with log-linear 
relationship to circulation index. 
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I  ntroduction: A climatological goal of extremes analysis is to 
extract common physical behavior across extreme events so as 

to gain insight into the causes and maintenance of extreme events. 
Depending on the phenomenon, such analysis may rely on several 
fields, such as mean sea-level pressure; mass, energy, moisture 
and momentum fluxes; and winds, temperature, humidity and 
geopotential heights at various atmospheric levels. One way of 
distilling common physical behavior from multiple fields is to 
form composites across many extreme events at the time of event 
occurrence and perhaps also at times preceding the events.

However, if there are multiple causes of extremes or if different 
events occur in different parts of an analysis region, then 
compositing all events may yield a muddled, and perhaps 
misleading, picture. Methods that group together events with 
similar characteristics can avoid this problem and potentially 
allow more physically relevant composites. One approach to this 
is Self-Organizing Maps (SOMs).

SOMs – Overview: Self-Organizing Maps (SOMs; Kohonen 1995) 
are two-dimensional arrays of maps that display characteristic 
behavior patterns of a field (e.g., Cavazos 2000; Hewitson and 
Crane 2002; Gutowski et al. 2004; Cassano et al. 2007). In 
comparison with more traditional approaches to investigating 
multi-dimensional data (e.g. empirical orthogonal functions) 
the SOM approach compares favorably (Reusch et al. 2005) 
with distinct advantages in interpreting underlying physical 
processes. SOMs can reveal observed and simulated evolution 
of targeted fields, including periodic behavior, provide a 
basis for estimating statistical significance of climate-change 
differences, and support conditional compositing of interacting 
fields and development of probability distributions. Using 
SOMs, one can assess physical interactions within a model and, 
further, determine how well a model agrees with observations 
for sound, physical reasons. SOMs thus give a quantitative, 
dynamic perspective on climatic behavior and differences 
between periods and data sources examined. 
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