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ABSTRACT
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Traditional multimodel methods for estimating future changes in precipi-

tation intensity, duration, frequency (IDF) curves rely on mean or median of

models’ IDF estimates. Such multimodel estimates are impaired by large esti-

mation uncertainty, shadowing their efficacy in future planning efforts. Here,

assuming that each climate model is one representation of the underlying data

generating process – i.e. the Earth system, we propose a novel extension of

current methods for estimating multimodel IDFs through pooling model data:

(i) evaluate performance of climate models in simulating the spatial and tem-

poral variability of the observed annual maximum precipitation (AMP), (ii)

bias-correct and pool historical and future AMP data of reasonably perform-

ing models, and (iii) compute IDF estimates in a non-stationary framework

from pooled historical and future model data. Pooling enhances fitting of

the extreme value distribution to the data and assumes that data from rea-

sonably performing models represent samples from the observed (true) dis-

tribution. Through Monte Carlo simulations with synthetic data, we show

that return periods derived from pooled data have smaller biases and lesser

uncertainty than those derived from ensembles of individual model data. We

apply this methodology to NA-CORDEX models to estimate changes in 24-hr

precipitation-frequency (PF) estimates over the Susquehanna watershed and

Florida peninsula. Our approach identifies significant changes at more sta-

tions compared to traditional median-based PF estimates. The analysis sug-

gests that almost all stations over the Susquehanna and at least two-thirds of

the stations over the Florida peninsula will observe significant increases in

24-hr precipitation for 2-100 year return periods. [250 words]
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1. Introduction35

Studies, using both observational and model data, suggest more intense and more frequent ex-36

treme precipitation events may occur over midlatitude land areas in a warming climate (Tebaldi37

et al. 2006; Kharin et al. 2007, 2013; Collins et al. 2013; Donat et al. 2013; Fischer and Knutti38

2016; Rajczak and Schär 2017; Easterling et al. 2017). The intensity, frequency, and seasonal-39

ity of extreme precipitation events are also projected to increase in many parts of the continental40

United States (Easterling et al. 2017; Prein et al. 2017). Extreme precipitation events pose a sig-41

nificant threat to society and ecosystems with severe implications for human lives, infrastructure,42

economy, and food production (Rosenzweig et al. 2001; Smith and Katz 2013; Ziegler et al. 2014;43

Estrada et al. 2015). Therefore, reliable projections of change in the intensity and frequency of44

the extreme precipitation events is needed for planning and adaption efforts by stakeholders and45

government authorities.46

Precipitation frequency (PF) estimates – commonly referred to as intensity, duration, and fre-47

quency (IDF) curves – are the estimates of probable intensity of precipitation associated with48

different durations and return periods. These curves are widely used for a variety of applications49

such as storm water and flood management, and design of dams, reservoirs, bridges and high-50

ways (Trefry et al. 2005; Simonovic and Peck 2009; Sugahara et al. 2009; AghaKouchak et al.51

2018). Traditionally, IDF curves are estimated assuming temporal stationarity in the intensity and52

frequency of extreme rainfall (Trefry et al. 2005; Bonnin et al. 2006; Perica et al. 2011, 2013).53

However, the stationarity assumption is not valid in the face of temporal changes in frequency and54

intensity of extreme precipitation (Milly et al. 2008; Simonovic and Peck 2009; Katz 2013; Cheng55

and AghaKouchak 2014; Mondal and Mujumdar 2015). Studies have shown that IDF curves main-56

taining the stationarity assumption tend to underestimate extreme precipitation events (Cheng and57
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AghaKouchak 2014; Sarhadi and Soulis 2017; Hosseinzadehtalaei et al. 2018). These studies stim-58

ulated a number of subsequent studies to adopt nonstationary models for IDF analysis (Villarini59

et al. 2010; Tramblay et al. 2013; Cheng et al. 2014; Mondal and Mujumdar 2015; Sarhadi and60

Soulis 2017; Ragno et al. 2018; AghaKouchak et al. 2018; Ganguli and Coulibaly 2019; Ouarda61

et al. 2019; Schardong and Simonovic 2019; Wehner et al. 2020; Wehner 2020). Notably, some of62

these studies have used historical observed data for nonstationary analysis assuming that similar63

trends or nonstationary behaviour in extremes continues into the future (Willems and Vrac 2011;64

Cheng and AghaKouchak 2014; Sarhadi and Soulis 2017; Agilan and Umamahesh 2018).65

Recent international collaborative efforts have made available high resolution regional climate66

models (RCMs) that are found to provide more credible climate projections than global climate67

models (GCMs) (Giorgi et al. 2016; Gutowski et al. 2020). RCMs are physically-based climate68

models representing complex components (land, ocean, sea-ice) of the Earth system and their69

interactions at much finer spatial scale than conventional coarse resolution GCMs. The higher res-70

olution enabled by RCMs improves the representation of local forcings such as topography, coast-71

lines, and complex land structure, as well as anthropogenic forcing such as greenhouse gas con-72

centrations, land-use changes, and aerosols (Giorgi et al. 2009) at local-to-regional scales. Many73

studies have used RCMs for estimating future IDF curves, providing useful information about74

changes in IDF estimates (Ragno et al. 2018; AghaKouchak et al. 2018; Ganguli and Coulibaly75

2019). However, such estimates also come with some limitations. First, most previous studies do76

not analyze the historical performance of models and therefore do not exclude poorly performing77

models that may bias the estimates (Ragno et al. 2018; AghaKouchak et al. 2018; Hosseinzade-78

htalaei et al. 2018). Evaluation of a model’s performance in simulating the observed variability79

is a first step towards understanding climate change signals, which renders confidence in quan-80

tifying uncertainty in future projections (Giorgi et al. 2004; Knutti et al. 2010; Bukovsky 2012;81
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Rupp et al. 2013; Wang et al. 2015). The reliability of a future projection increases if models are82

weighed or at least selected based upon their skill (Knutti et al. 2010; Mishra et al. 2018). The83

Intergovernmental Panel on Climate Change (IPCC) report on the evaluation of climate models84

mentions that “the spread in climate projections can be reduced by weighting of models according85

to their ability to reproduce past observed climate” (Flato et al. 2014). Second, most simulations86

in individual models are not long enough (typically spanning 50 to 100 years), leading to large87

uncertainty around the IDF estimates for return periods longer than the sample size (Sadegh et al.88

2018). Third, most studies, based upon a multi-ensemble approach, apply some kind of averaging89

(e.g., mean or median) of IDF estimates from individual RCM/GCM models (Ragno et al. 2018;90

AghaKouchak et al. 2018; Schardong and Simonovic 2019; Padulano et al. 2019). Such median91

(mean) based estimates result into a lessening of the intensity of probable extremes, and are also92

impaired by large estimation uncertainty around the median (mean) estimates.93

In this paper we present a novel extension of current methods for computing multimodel IDF94

estimates based upon pooling data from models that perform reasonably in simulating the histor-95

ical observed variability. The pooling of model data is based upon the assumption that each cli-96

mate model is one representation of the physical processes that govern the Earth system, and data97

from reasonably performing models represent samples from the observed (true) distribution. Our98

hypothesis is that pooling (concatenating) information from various models, rather than adopt-99

ing mean or median, can help reduce the bias (difference between the observed and estimated100

IDF estimates/return periods) and the uncertainty (90% confidence interval) around the IDF esti-101

mates. We test this hypothesis by using Monte Carlo simulations on synthetic data derived from102

the distributions of the observed 1-, 6-, 12-, and 24-hr duration annual maximum precipitation,103

and show that pooling annual model information indeed reduces both the biases and uncertainty104

in the estimated return periods of precipitation across different durations. We then apply our105
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method to the historical and RCP8.5 (future) simulations from a set of 12 regional climate models106

(RCMs) from the North American Coordinated Regional Climate Downscaling Experiment (NA-107

CORDEX) project to estimate future changes in 24-hr precipitation frequency estimates over the108

Susquehanna watershed and Florida peninsula. The method follows this procedure: First, evaluate109

the historical performance of RCMs in simulating the spatial and temporal variability of the ob-110

served annual maximum precipitation (AMP). Specifically, the spatial and temporal variability of111

the simulated AMP are evaluated using Taylor diagrams and the interannual variability skill score112

(IVSS), respectively. Second, bias-correct the historical and RCP8.5 AMP data of climate models.113

Bias-correction reduces spatial scale mismatch between station (point) observations and gridded114

model output (areal average inside a grid box) (Sharma et al. 2007; Turco et al. 2017). Third, pool115

the bias-corrected historical and RCP8.5 AMP data of selected models. Pooling concatenates data116

from each model, enhancing the fitting of the extreme value distribution to the data. We then use117

the fitted distribution to compute non-stationary 24-hr PF estimates in the pooled historical and118

future simulations using an annual maxima approach.119

We select two watersheds with widely different climatology and physical characteristics, and120

with significant regional importance. The Susquehanna watershed spreads over parts of New121

York, Pennsylvania and Maryland. The watershed is important for power production, agricul-122

ture, and drinking water supplies, among other uses. It is one of the most flood-prone regions in123

the US and has also experienced droughts in parts of the watershed (https://www.srbc.net/124

our-work/reports-library/technical-reports/state-of-susquehanna-2013/). How-125

ever, until recently, decision-making has largely relied upon historical records that do not account126

for climate projections. Consequently, information on future changes in extreme precipitation127

events has featured prominently in requests from stakeholders, especially water managers. Far-128

ther to the south, the Florida peninsula is a diverse ecosystem that also includes the Kissimmee-129
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Southern Florida watershed and the Florida Everglades. The key challenges to this region are130

drinking water management, restoration of natural ecosystems, sea level rise and flooding. Ad-131

dressing these challenges requires reliable information on changes in the intensity, duration and132

frequency of precipitation However, the geography of Florida is barely resolved in the global133

climate models (Misra et al. 2011), and so regional stakeholders generally require downscaled in-134

formation. Mesoscale events on the order of 10–1000 kilometers play a significant role in Florida’s135

hydroclimate, calling for high-resolution climate models to resolve these processes (Maxwell et al.136

2012; Prat and Nelson 2013). In both regions, high-resolution regional climate models are thus137

necessary to enable estimation of changes in IDF estimates.138

We emphasize that the results obtained from the Monte Carlo simulations performed on the139

observed annual maximum precipitation for different durations (here, 1-, 6-, 12-, and 24-hr) show140

that the method of pooling data is superior to the conventionally used median model selection in141

reducing bias and uncertainty in estimating return periods. Since sub-daily data are not available142

for most of the NA-CORDEX models, we applied our method only to the 24-hr annual maximum143

precipitation. It is also worth mentioning that changes in 24-hr precipitation for return periods up144

to 100 years are of interest to the stakeholders in both regions (Jagannathan et al. 2020).145

The remainder of the paper is summarized as follows. Section 2 describes the observed and146

model data used in the study. Section 3 describes metrics used for assessing model performance,147

and the framework for IDF estimates. Section 4 discusses results of the study and section 5 sum-148

marizes the results.149

2. Data150

In this analysis we have used annual maximum precipitation (AMP) data calculated for each151

calendar year. The station-based AMP data are downloaded from the NOAA Atlas 14 website152
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(https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html). Most of the station-based153

datasets have at least 40 years of data over the period 1951-2005. The model data for the anal-154

ysis are obtained from the historical (1956-2005) and RCP8.5 (2049-2098) simulations of re-155

gional climate models at 0.22◦ grid spacing in the North American Coordinated Regional Cli-156

mate Downscaling Experiment (NA-CORDEX) (Mearns et al. 2017). The 12 RCMs analyzed157

here are run with boundary conditions from 4 GCM simulations from the Fifth phase of Cli-158

mate Model Intercomparison Project (CMIP5) archive (Taylor et al. 2012). The list of RCMs159

with their host institutions is given in Table 1. Detailed information on the RCMs, such as dy-160

namical core, model components, model physics and parameterization schemes can be found161

at https://na-cordex.org/rcm-characteristics and in the references mentioned therein.162

The model data are interpolated onto station locations using the nearest neighbour interpolation163

scheme.164

3. Methodology165

a. Monte Carlo simulations166

If we assume that models are distinct realizations of the processes that govern the Earth system,167

and data from reasonably performing models represent samples from the observed (true) underly-168

ing data generating distribution, then pooling annual maximum data from models may reduce bias169

and uncertainty in the IDF estimates. We hypothesize that drawing a higher number of samples170

from the underlying data generating process promotes a superior distribution fit and thereby more171

reliable IDF estimates. In order to test this hypothesis we perform Monte Carlo simulations on172

synthetic data derived from the observed distribution. The procedure has the following steps:173
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1. Estimate the reference return period for an arbitrarily chosen quantile q by fitting a GEV dis-174

tribution (reference distribution, Fo) to the observed annual maximum data. The reference175

return period is defined as RO = 1/[1−FO(q)], where, FO(q) is the non-exceedance probabil-176

ity and RO is the return period for the reference quantile q.177

2. Generate S samples of annual maximum precipitation from FO.178

3. Fit a GEV distribution FS to the S samples drawn at step 2.179

4. Estimate the return period RS for the reference quantile q from FS, defined as180

RS = 1/[1−FS(q)]181

5. Repeat steps 2–4 100 times.182

6. Estimate bias (difference between the reference return period and the median of return periods183

from step 5) and interquartile range (IQR) of the estimated return periods from step 5.184

7. Draw L samples (L >> S) from the reference GEV distribution.185

8. Fit a GEV distribution FL to the L samples drawn at step 7.186

9. Estimate the return period RL for the reference quantile q from FL, defined as187

RL = 1/[1−FL(q)]188

10. Repeat steps 7–9 100 times.189

11. Estimate bias and IQR of the estimated return periods from step 10.190

12. Compare biases and IQRs from steps 6 and 11.191

If the bias and IQR of the estimated return period from pooled samples (L) are smaller than192

those derived from S samples, we conclude that pooling enables better fitting of the extreme value193
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distribution to the data, reducing the bias and uncertainty in the return period estimates. It should194

be noted that we use the pooled data to only fit the GEV distribution, and then, derive the return195

periods/ or PF estimates using an annual maximum approach.196

b. Evaluation of model performance197

While there are a number of approaches for evaluating model performance, a reasonable ap-198

proach is to use a metric that scores models based upon their ability to simulate the mean climatol-199

ogy and temporal variability of the variable of interest. Since only AMP data are required for IDF200

estimation, we analyze models on the basis of their ability to simulate the spatial and temporal201

variability of the observed AMP. The selected performance metrics are described below:202

1) TAYLOR DIAGRAM203

The skill of a model in simulating the spatial pattern of the observed AMP is analyzed using a204

Taylor diagram (Taylor 2001). For generating a Taylor diagram, the long-term mean of the AMP205

(hereafter, MAM) is computed at each station location so that there are as many MAM values206

as the number of stations in a study region. The Taylor diagram provides a concise statistical207

summary of similarity between a model’s MAM and the observed MAM in terms of their pattern208

correlation (correlation between the MAM in the observation and that in a model) ; normalized209

standard deviation (NSD) (computed by dividing the spatial standard deviation of the MAM in210

a model by the standard deviation of the MAM in the observation); and normalized root mean211

squared difference (NRMSD) (defined as the root mean squared difference between a model’s212

MAM and the observed MAM, divided by the standard deviation of the observed MAM). A model213

perfectly simulating spatial patterns of the observed MAM should have correlation equal to 1,214

spatial standard deviation equal to that of the observation (i.e., NSD equal to 1), and NRMSD215

11



equal to zero. Each model is represented by a single point on the Taylor diagram. Taylor diagram216

enables to concisely evaluate the simulated spatial pattern in more detail. For example, as is217

nicely summarized in Taylor (2001), a simple pattern correlation does not tell if the two patterns218

(reference and model) have similar magnitude of spatial variation. Similarly, a simple RMSD219

based metric does not convey how much of the error is due to the difference in structure or phase220

and how much is due to the difference in the magnitude of variation.221

2) INTERANNUAL VARIABILITY SKILL SCORE222

The interannual variability skill score (IVSS) is a “symmetric” variability measure, similar to223

that in Gleckler et al. (2008) that scores two models equally if one simulates twice the observed224

temporal variability and the other simulating half of the observed temporal variability. IVSS is225

defined as226

IV SS =
1
N

N

∑
n=1

(
IQRm

IQRo
− IQRo

IQRm

)2

, (1)227

where IQRo and IQRm are the interquartile ranges (IQRs) of the AMP at a station in a model and228

the observation, respectively. N is the total number of stations in each study region. IVSS will229

be zero for a model perfectly simulating the observed IQR. The smaller the IVSS, the better the230

model performance. We defined IV SS using IQR since IQR is less affected by outliers in the data,231

and hence considered a more robust statistics than standard deviation. Similar metrics have been232

used for model evaluation in some previous studies (Chen et al. 2011; Jiang et al. 2015; Srivastava233

et al. 2020).234

3) SELECTION OF MODELS235

Models employed for calculating IDF are selected using following criteria:236
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• Taylor diagram: spatial correlation ≥ critical value of correlation (2/
√

N). Where, N is the237

number of stations in the regions (42 over the Susquehanna and 73 over the Florida peninsula).238

Normalized standard deviation (NSD) between 0.8 and 1.2.239

• IVSS: IVSS ≤ 1.13, assuming that 0.6≤ IQRm/IQRo ≤ 1/0.6 for each station in a region.240

4) BIAS CORRECTION OF MODELS241

Bias correction improves the usability of models, especially for users interested in impacts.242

However, as argued in Zhang and Soden (2019), bias correction is only useful in constraining in-243

termodel spread when applied to models that are sufficiently performing in the historical period244

and are shown to capture the relevant processes. Our downselection of models based on perfor-245

mance is thus necessary to constrain future projections.246

Many existing statistical bias correction methods, such as simple quantile mapping (QM)247

method, assume that higher order statistics of a distribution, such as variance and skewness, remain248

stationary and only the mean changes. However, this assumption may not hold in a nonstationary249

climate (Meehl et al. 2004). Therefore, following Wang and Chen (2014); Ganguli and Coulibaly250

(2019), we use a bias-correction method called equiratio cumulative distribution function match-251

ing (ERCDFM) that allows the possibility of changes in the higher order moments by incorporat-252

ing information from the CDF of a model projection. This method is a modified version of the253

equidistant cumulative distribution function matching (EDCDFM) proposed by Li et al. (2010).254

The bias-correction is applied on the AMP data. If xh is the ‘raw’ historical AMP time series in a255

model, then bias-adjusted value of xh can be formulated as256

x̂h = F−1
o [Fh(xh)], (2)
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where, x̂h is the bias-corrected historical AMP data, Fh is the cumulative distribution function257

(CDF) of xh, and F−1
o is the inverse CDF of the AMP timeseries in the observation. The future258

bias-corrected values of AMP timeseries are obtained as259

x̂ f = x f ×
F−1

o [Ff (x f )]

F−1
h [Ff (x f )]

, (3)

where, x f and x̂ f are raw and bias-corrected future values of AMP data, respectively. F−1
h is the260

inverse of the CDF Fh, and Ff is the CDF of the future AMP data.261

5) POOLING OF REASONABLY PERFORMING MODELS262

We pool the bias-corrected historical and RCP8.5 AMP from the selected models. Pooling263

increases the sample size, enhancing the fitting of the extreme value distribution to the data. This264

helps in reducing the bias and uncertainty in the IDF/ PF estimates.265

6) EXTREME VALUE ANALYSIS266

IDF or PF estimates using data in the form of block maxima (e.g, annual maximum data in our267

case) are generally computed by fitting generalized extreme value (GEV) distribution to the data.268

The theoretical justification for fitting GEV distribution to the block maxima is described in Coles269

et al. (2001). The GEV distribution is defined as270

G(z) = exp

{
−
[

1+ζ

(
z−µ

σ

)]−1/ζ
}
, (4)271

where, µ , σ and ζ the location, scale and shape parameters. In the stationary model of a GEV272

distribution, parameters µ , σ and ζ are considered time-invariant i.e., fixed in time. The non-273

stationary GEV distribution is modeled by introducing a time component as a covariate in the274

location and/or scale parameters. We used the following linear regression model for incorporating275
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nonstationarity in the location and shape parameters:276

µ(t) = µ0 +µ1t (5a)277

σ(t) = σ0 +σ1t, (5b)278

279

where, µ(t) and σ(t) are the time dependent location and scale parameters, respectively. Parame-280

ters of the GEV distribution are estimated by using maximum likelihood estimation (MLE) method281

(Coles et al. 2001) . In order to chose between stationary and nonstationary models, we adopted282

the following approach. If no significant trend at the 5% level in the AMP is found using the283

Mann-Kendall (MK) trend test (Mann 1945), the stationary model is chosen for the IDF analysis.284

If a significant trend is found then one of the two nonstationary models described here is adopted:285

(i) a nonstationary model with time as a covariate in the location parameter as described in Eq.286

(5)(a), or (ii) a nonstationary model with time as a covariate in the location and scale parameters287

as described in Eq. (5)(a) and (b). In order to choose between nonstationary models (i) and (ii)288

we use a model selection criteria called Akaike Information Criteria (AIC) (Akaike 1974). The289

nonstationary model with the lower AIC value is chosen for the GEV analysis. A similar approach290

has been adopted in Ragno et al. (2018) and AghaKouchak et al. (2018). For the GEV analysis we291

have used “extRemes2.0” extreme value analysis package (Gilleland and Katz 2016) in R (R Core292

Team 2018).293

7) METRIC FOR ESTIMATING SIGNIFICANCE OF CHANGE IN IDF ESTIMATES294

To test the significance of difference between RCP8.5 and historical IDF estimates we use z-295

statistic as defined in Srivastava et al. (2019). The statistic is defined as296

Z =
PTR−PTH√

σ2
TR

NR
+

σ2
TH

NH

, (6)297
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where, PTR and PTH are the T-year precipitation estimates in the RCP8.5 and historical simulations.298

σTR and σTH are the standard deviations of the corresponding estimates. NR and NH are the number299

of observations used in calculating PTR and PTH , respectively. The terms in the denominator can be300

estimated from confidence intervals of the respective T-year estimates. For instance, the (1−α)%301

confidence interval of PTH is expressed as302

(1−α)%CI = PTH ± zα/2
σTH√

NH
, (7)303

where zα/2 is the (1−α) quantile of the standard normal distribution. For a significance level of304

α = 0.05, (corresponding to a 95% confidence interval), z5% equals 1.96. If |Z| ≤ 1.96, we say305

that the null hypothesis cannot be rejected at the 5% significance level – or, in other words, the306

difference between the two estimates is not significant at 5% significance level. Similar metrics307

have been used in Nataraj and Grenney (2005); Madsen et al. (2009); Ganguli and Coulibaly308

(2019); Rhoades et al. (2020).309

4. Results310

a. Monte Carlo Simulations311

Fig. 1 and Table 2 show return periods estimated from Monte Carlo simulations for 50 and312

50× 6 samples drawn from the observed 24-hr annual maximum precipitation over all stations313

in the Susquehanna watershed. Bias in the estimated return period is indicated by the difference314

between the observed and the median of the estimated return periods. The uncertainty is indicated315

by the interquartile range. It is apparent that the range of absolute bias in return periods from 50316

samples (column “aBias.S50” in Table 2) is 0–0.48 years and that from 50× 6 samples (column317

“aBias.S300” in Table 2) is 0–0.17 years. The median absolute bias over the watershed, computed318
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for 50 samples, is 0.15 years and that for 50× 6 samples is 0.04 years. Also, for more than 71%319

of the cases, the bias for 50×6 samples is smaller than that for 50 samples– this is also clear from320

the last panel (blue curve) in Fig. 1. Moreover, the uncertainty across the return period estimates321

obtained from 50× 6 samples is considerably smaller than that obtained from 50 samples. This322

indicates that pooling of data reduces both the bias and uncertainty in the estimates.323

We draw a similar conclusion from the Monte Carlo simulations performed on synthetic data324

drawn from the observed 24-hr annual maximum precipitation for the Florida peninsula (Fig.325

2 and Table 3). Here too, the range of absolute bias computed from 50× 6 samples (0–0.25326

years; column “aBias.S300” in Table 3) is smaller than that from 50 samples (0.01–0.54 years;327

column “aBias.S50” in Table 3). The average mean absolute bias over the peninsula is also smaller328

for 50× 6 samples (0.03 years) than for 50 samples (0.13 years), and the absolute bias from329

50× 6 samples remains lower than that from 50 samples about 80% of the time. The estimation330

uncertainty is smaller for 50×6 samples as indicated by IQR in Fig. 2.331

In order to show that the method of pooling model data works for precipitation across different332

durations, we repeated the Monte Carlo simulations test on 1-, 6-, and 12-hr annual precipitation333

maxima over the Susquehanna. Also, to account for the fact that synthetic data may have smaller334

uncertainty than the observed data, we added a red noise with a ±5% standard deviation to the335

synthetic data generated at steps 2 and 7 of the Monte Carlo procedure mentioned above. More-336

over, to demonstrate that the method of pooling data is applicable for distributions other than only337

the GEV distribution, we fitted five candidate distributions to the data. The five candidate dis-338

tributions are: generalized logistic (GLO), the generalized extreme value (GEV), the generalized339

normal (GNO), the Pearson type III (PE3), and the generalized Pareto (GPA). We select the best340

fitted distribution using a goodness-of-fit measure proposed by Hosking and Wallis (1997). The341

goodness-of-fit measure (Zdist) estimates how well the L-kurtosis of the fitted distribution matches342

17



with that of the sample data. If a candidate distribution is the true distribution, its goodness-of-fit343

measure should have approximately a normal distribution. The distribution fit is acceptable at the344

10% significance level, if its Zdist < 1.645. The distribution with the smallest Zdist satisfying the345

above criteria is declared the best fitted distribution (Srivastava et al. 2019). We use the best fitted346

distribution to estimate the observed return period. The results are shown in the Supplemental347

Material Tables S1–S3 and Figs. S1–S3. These results confirm that pooling of model data reduces348

both the bias and uncertainty in the the return period estimates of precipitation across various349

durations.350

b. Evaluation of AMP in climate models351

1) BIAS IN THE MEAN ANNUAL MAXIMUM PRECIPITATION (MAM)352

Fig. 3 shows bias in MAM over the Susquehanna and Florida peninsula. For the Susquehanna353

(Fig. 3(a)) the observed MAM over the Susquehanna ranges between 1.8 and 3.4 inches/day354

and generally increases from north to south. The maximum precipitation is observed along the355

southern edge of the watershed. The figure shows that there exists considerable variability in356

the bias across models. In general, model biases range between -1 and 1 inches/day for most of357

the stations. In particular, CanESM2.CanRCM4 (A), MPI-ESM-LR.CRCM5-OUR (I) and MPI-358

ESM-LR.CRCM5-UQAM (J) have positive biases in MAM over most parts of the watershed.359

Whereas, some models (e.g., CanESM2.CRCM5-OUR (B), HadGEM2-ES.WRF (H) and MPI-360

ESM-LR.WRF (L)) show wet bias in the northern areas of the watershed and dry bias in southern361

areas.362

The observed MAM in the Florida peninsula ranges between 3.5 and 6 inches/day (Fig. 3(b)).363

The maximum MAM is observed along the south-eastern edge of the peninsula. Generally, coastal364

areas receive higher precipitation than inland areas. The lowest rainfall (< 4 inches/day) is ob-365
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served along the northern and south-eastern edges of the Kissimmee-Southern Florida watershed.366

Generally, most models show strong negative biases (> 1 inches/day) in MAM across most of the367

basin. The largest and the most widespread dry biases are observed in CanESM2.CanRCM4 (A),368

CanESM2.CRCM5-UQAM (C), GFDL-ESM2M.WRF (F), HadGEM2-ES.WRF (H) and MPI-369

ESM-LR.WRF (L). Noticeably, MPI-ESM-LR.CRCM5-OUR (I) exhibits wet bias over most sta-370

tions, except those at the south-eastern edge of the peninsula.371

In summary, for the Susquehanna there is considerable variability in the magnitude, sign and372

pattern of biases across models, whereas on the Florida peninsula most models show dry biases373

throughout. Generally, models exhibit biases of larger magnitude over the Florida peninsula than374

over the Susquehanna.375

2) THE TAYLOR DIAGRAM376

Figs. 4(a) and (b) show performance of climate models in simulating the spatial pattern of the377

observed MAM. For the Susquehanna (Fig. 4(a)), MPI-ESM-LR.CRCM5-OUR (I) agrees best378

with the observation followed by CanESM2.CRCM5-UQAM (C) and MPI-ESM-LR.CRCM5-379

UQAM (J). MPI-ESM-LR.CRCM5-OUR (I) has the least centered NRMSD resulting from the380

highest correlation (∼ 0.85) and the normalized standard deviation (NSD) close to 1. Mod-381

els CanESM2.CanRCM4 (A), GFDL-ESM2M.RegCM4 (E), CanESM2.CRCM5-OUR (B) and382

GFDL-ESM2M.CRCM5-OUR (D) have similar correlation, but CanESM2.CRCM5-OUR (B) and383

GFDL-ESM2M.CRCM5-OUR (D) have standard deviation much lower (less than half) than in384

the observation. This results in the largest RMS error in CanESM2.CRCM5-OUR (B) and GFDL-385

ESM2M.CRCM5-OUR (D).386

The Taylor diagram for Southern Florida is shown in Fig. 4(b). MPI-ESM-LR.WRF (L) out-387

performs other models as it has the correct standard deviation of the MAM (equal to the obser-388

19



vation) and the highest correlation skill (nearly 0.7) resulting in the lowest RMS error. MPI-389

ESM-LR.WRF (L) and MPI-ESM-LR.RegCM4 (K) have about the same standard deviation as in390

the observation, but MPI-ESM-LR.RegCM4 (K) has much lower correlation skill, which makes its391

NRMSD higher than MPI-ESM-LR.WRF (L). CanESM2.CanRCM4 (A) and CanESM2.CRCM5-392

OUR (B) perform poorly compared to other models in this region. Both of these models have neg-393

ative correlation skill resulting in their NRMSD being larger than the other models in the group.394

In summary, models show slightly better skills in simulating the spatial variability of the ob-395

served MAM over the Susquehanna than over the Florida peninsula. CanESM2.CanRCM4 (A),396

CanESM2.CRCM5-OUR (B) and GFDL-ESM2M.CRCM5-OUR (D) perform least well in both397

regions.398

3) BIAS IN THE INTERANNUAL INTERQUARTILE RANGE OF AMP399

Fig. 5 shows bias in the interannual interquartile range (IQR) of AMP in terms of the ratio of400

the interannual IQR of AMP in models over that in the observation. The panel “obs” in Fig. 5(a)401

shows the interannual IQR of AMP (in inches/day) in the observation over the Susquehanna. The402

IQR of the observed AMP varies between 0.5 and 1.5 inches/day. The interannual IQR generally403

increases from north to south– this pattern is consistent with the pattern of the observed MAM,404

as noted in Fig. 3, that generally increases from north to south. Noticeably, a majority of the405

models underestimate the observed interannual variability. In contrast, CanESM2.CanRCM4 (A)406

and MPI-ESM-LR.CRCM5-UQAM (J) overestimate the observed temporal variability at most of407

the stations in the watershed. Overall, the IQR of AMP for MPI-ESM-LR.CRCM5-OUR (I) over408

most of the stations is the closest to that in the observation (ratio within 0.5–1.5 range) indicating409

that this model best simulates the interannual variability among NA-CORDEX models. Generally,410

biases vary with the magnitude of the observed interannual IQR.411
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For the Florida peninsula (Fig. 5(b)), the interannual IQR of the observed AMP varies be-412

tween 1 and 2.5 inches/day for most of the peninsula except southeastern coastal region. The413

interannual variability of the observed AMP is generally higher at stations in the coastal areas414

than at stations that are in the middle of the peninsula. The highest variability is observed along415

the south-eastern edge of the region. The spatial pattern of the observed temporal variability416

is consistent with that of the observed mean AMP as noted in Fig. 3. A majority of models417

underestimate the observed interannual variability at a majority of stations (CanESM2.CRCM5-418

UQAM (C), GFDL-ESM2M.RegCM4 (E), GFDL-ESM2M.WRF (F), HadGEM2-ES.RegCM4419

(G), HadGEM2-ES.WRF (H) and MPI-ESM-LR.WRF (L)), whereas some models such as MPI-420

ESM-LR.CRCM5-OUR (I), and MPI-ESM-LR.CRCM5-UQAM (J) overestimate the observed421

interannual variability at most of the stations. In nearly all of the models the largest biases in the422

interannual IQR are observed along the coast, most prominently in the south-eastern stations. This423

pattern suggests that, generally, biases in the IQR vary with the magnitude of the observed IQR.424

In summary, models generally underestimate the observed IQR in both the regions. Also, model425

biases vary with the IQR magnitude of the observed AMP. The magnitude of model biases in the426

interannual variability is generally larger over the Florida peninsula than over the Susquehanna.427

4) ESTIMATION OF IVSS428

Fig. 6 shows interannual variability skill scores (IVSS) of models. For the Susquehanna429

(Fig. 6(a)), models MPI-ESM-LR.CRCM5-OUR (I), HadGEM2-ES.WRF (H), MPI-ESM-430

LR.CRCM5-UQAM (J), and CanESM2.CRCM5-UQAM (C) have the lowest IVSS values (<431

0.5) indicating that these models best simulate the observed interannual variability. GFDL-432

ESM2M.CRCM5-OUR (D) and CanESM2.CanRCM4 (A), on the other hand, have much larger433

IVSS values (> 1).434
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Over the Florida peninsula (Fig. 6(b)) MPI-ESM-LR.RegCM4 (K), MPI-ESM-LR.CRCM5-435

UQAM (J), CanESM2.CanRCM4 (A), and GFDL-ESM2M.CRCM5-OUR (D) have the smallest436

IVSS values (< 0.5) indicating that these models perform the best in capturing the observed inter-437

annual variability. GFDL-ESM2M.WRF (F), HadGEM2-ES.WRF (H), and MPI-ESM-LR.WRF438

(L) perform poorly compared to other models. Noticeably, the IVSS value of majority of models in439

the Florida peninsula is spread over a narrow range of IVSS values (0.4-0.75) indicating that these440

models have comparable skill in simulating the observed interannual variability. Interestingly,441

models CanESM2.CanRCM4 (A) and GFDL-ESM2M.CRCM5-OUR (D) that perform least well442

in the Susquehanna are among the best performers in the Florida peninsula. Conversely, model443

HadGEM2-ES.WRF (H) is the second best performer over the Susquehanna, but the second to the444

worst performer over the Florida peninsula.445

5) OVERALL MODEL PERFORMANCE446

Fig. 7 shows a scatter diagram of models’ NRMSD values (X-axis) from the Taylor diagram447

against IVSS values (Y-axis). The figure shows overall performance of models in simulating the448

spatial and temporal variability of the observed AMP. As shown in Fig. 7(a), for the Susquehanna,449

models that perform relatively better in simulating spatial variability of the observed AMP (rela-450

tively lower NRMSD) also perform better in simulating the temporal variability (relatively lower451

IVSS) and vice-versa. This is also evident from a high positive correlation of 0.7 between NRMSD452

and IVSS.453

For the Florida peninsula (Fig. 7(b)), the majority of models that perform relatively better in454

simulating the observed spatial variability perform relatively poorly in simulating the observed455

temporal variability and vice-versa. This is also evident from a high negative correlation of -0.5456

between NRMSD and IVSS values for all models considered.457
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6) SELECTION OF MODELS458

Fig. 8 shows the scatter diagram of the product of correlation skill and normalized standard459

deviation (X-axis) against IVSS (Y-axis). The dashed horizontal and vertical lines are drawn460

using our selection criteria defined in section 3. The models that are selected by us for fur-461

ther evaluation are located in the green shaded region. Models selected for the Susquehanna462

are: CanESM2.CRCM5-UQAM (C), GFDL-ESM2M.RegCM4 (E), GFDL-ESM2M.WRF (F),463

HadGEM2-ES.RegCM4 (G), HadGEM2-ES.WRF (H), MPI-ESM-LR.CRCM5-OUR (I), MPI-464

ESM-LR.CRCM5-UQAM (J), MPI-ESM-LR.RegCM4 (K) and MPI-ESM-LR.WRF (L); and for465

the Florida peninsula: CanESM2.CRCM5-UQAM (C), GFDL-ESM2M.RegCM4 (E), HadGEM2-466

ES.RegCM4 (G), MPI-ESM-LR.CRCM5-OUR (I), MPI-ESM-LR.CRCM5-UQAM (J) and MPI-467

ESM-LR.RegCM4 (K).468

In summary, the analysis presented in the subsection 4(b) demonstrates the reason for analyzing469

the historical performance of climate models before using them for quantifying future changes in470

extreme events It is evident that none of the models show comparable skill across regions. Select-471

ing models that have reasonable skill in simulating the observed spatial and temporal variability is472

expected to lead to greater confidence in future projections (Zhang and Soden 2019).473

c. Bias correction of models and pooling of reasonably performing models474

As noted in the previous section, since models exhibit large biases in simulating the spatial and475

temporal variability of the observed AMP, we apply bias correction to the historical and future sim-476

ulations of all models. Further, based upon model evaluation we selected models using the criteria477

defined in section 3. Finally, AMP data from the bias-corrected historical and RCP8.5 simulations478

of these models were pooled together for estimating future changes in 24-hr precipitation events.479
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d. Estimation of changes in precipitation extremes480

1) CHANGES IN THE MAM481

Fig. 9 shows differences (RCP8.5 minus historical) in the MAM computed from raw (not bias-482

corrected) historical and RCP8.5 simulations. In the Susquehanna (Fig. 9(a)) most of the models483

project an increase, at the 5% significance level, of 0.25–1 inches/day in the MAM across the484

watershed. The largest increase (1–2 inches/day) is projected in CanESM2.CanRCM4 (A). As for485

the Florida peninsula (Fig. 9(b)), although most of the models project an increase in the MAM,486

only a few of them (CanESM2.CanRCM4 (A), GFDL-ESM2M.RegCM4 (E) and HadGEM2-487

ES.RegCM4 (G)) project significant increases (at the 5% level) of 0.25–2 inches/day in the MAM488

throughout the peninsula. MPI-ESM-LR.CRCM5-OUR (I) projects a decrease in the MAM in489

parts of the peninsula, although the decrease is not significant.490

In summary, although an increase in the MAM over both the regions is projected in most of the491

models, a larger variability in both the sign and magnitude of changes in the MAM across models492

is projected over the Florida peninsula than over the Susquehanna.493

2) CHANGES IN 24-HR PF ESTIMATES: INDIVIDUAL MODELS VS MEDIAN VS POOLED494

Fig. 10 shows 24-hr PF estimates in the bias-corrected historical and RCP8.5 simulations at495

a station within the study regions. We randomly selected this station for presentation purposes,496

since we can not show 24-hr PF curves for all stations due to the space limitation. The panel label497

“median-all” refers to 24-hr PF estimates computed from taking the median of individual 24-hr PF498

estimates. The label “median-pooled” refers to 24-hr PF estimates computed from taking the me-499

dian of individual 24-hr PF estimates from models that are involved in pooling. Finally, “pooled”500

indicates 24-hr PF estimates are computed from pooling the reasonably performing models. We501

used “median” PF estimates, since, median is less affected by the presence of outlier models.502
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For the Susquehanna, as is evident from Fig. 10(a), all models except CanESM2.CRCM5-OUR503

(B), GFDL-ESM2M.RegCM4 (E) and MPI-ESM-LR.RegCM4 (K), project an increase in 24-hr504

precipitation for all return periods. But, the uncertainty in the projected increase (blue curve505

values minus red curve values) across models is quite large. Apparent from this figure, MPI-ESM-506

LR.RegCM4 (K) projects little change in the 24-hr PF estimates, whereas CanESM2.CanRCM4507

(A) projects the largest increase among all models for all return periods (for instance, around 3508

inches/day for the 50-year return period). GFDL-ESM2M.RegCM4 (E) projects a decrease in 24-509

hr PF estimates for 20-year or longer return periods. Another noticeable feature is that a large510

estimation uncertainty (90% CI around the estimates) exists in the historical and RCP8.5 IDF es-511

timates. This uncertainty is partly due to small sample sizes (50 years) in climate models. The512

projected changes in both the “median-all” and “median-pooled” 24-hr PF estimates suggest in-513

creases in the precipitation of comparable magnitude for all return periods, but this increase may514

not be statistically significant because of large and overlapping estimation uncertainties around515

the estimates. The “Pooled” 24-hr PF estimates are computed by pooling bias-corrected simula-516

tions of CanESM2.CRCM5-UQAM (C), GFDL-ESM2M.RegCM4 (E), GFDL-ESM2M.WRF (F),517

HadGEM2-ES.RegCM4 (G), HadGEM2-ES.WRF (H) MPI-ESM-LR.CRCM5-OUR (I) and MPI-518

ESM-LR.CRCM5-UQAM (J), MPI-ESM-LR.RegCM4 (K) and MPI-ESM-LR.WRF (L). For all519

return periods, the increase in 24-hr PF estimates from pooled models is similar in magnitude to520

that in the two median cases, although the estimation uncertainty is much smaller. Noticeably,521

since the 90% confidence intervals around the estimates (yellow shading around red curve and522

green shading around blue curve) in the pooled case do not overlap, the change in the 24-hr PF523

estimates is deemed statistically significant for all return periods.524

Over the Florida peninsula (Fig. 10(b)) all models project an increase in 24-hr precipitation525

for all return periods except model MPI-ESM-LR.RegCM4 (K) that projects a decrease in the526
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precipitation for 25-year or longer return periods. As in the Susquehanna, the uncertainty in527

projected changes in the 24-hr PF estimates across models is large (e.g., the projected change528

for 50-year return period ranges from around -0.25 inches/day (MPI-ESM-LR.RegCM4 (K)) to529

> 5 inches/day (HadGEM2-ES.RegCM4 (G)). Also, the uncertainty is large in all climate mod-530

els. Both of the median cases project an increase in 24-hr PF estimates for all return periods531

examined, but the changes do not seem to be statistically significant because confidence intervals532

from historical and RCP8.5 simulations overlap and also because confidence intervals from one533

simulation include IDF estimates from the other simulation. Models that are used for pooling534

are CanESM2.CRCM5-UQAM (C), GFDL-ESM2M.RegCM4 (E), HadGEM2-ES.RegCM4 (G),535

MPI-ESM-LR.CRCM5-OUR (I),MPI-ESM-LR.CRCM5-UQAM (J) and MPI-ESM-LR.RegCM4536

(K). The historical and future 24-hr PF estimates in the pooled cases are similar in magnitude as537

in the median cases. Both of the median cases and pooled models project an increase of around538

2 inches in 24-hr precipitation for the 50-year return period. However, the changes projected by539

the pooled models seem to be statistically significant in contrast to the changes projected by the540

median cases.541

Fig 11(a) shows changes in 5-year precipitation over the Susquehanna in bias-corrected models.542

In Fig 11 (and all subsequent figures) the significance of change is estimated at the 5% signifi-543

cance level as described in the subsection 3(7). All models project increases in 24-hr precipitation544

at most of the stations, although both the magnitude of change and its significance vary consid-545

erably across models. For instance, CanESM2.CanRCM4 (A) projects the largest changes (> 1546

inches/day) at most of the stations, whereas, MPI-ESM-LR.CRCM5-OUR (I) projects an increase547

(< 0.25 inches/day) that is not statistically significant at the 5% level. The “median-all” combi-548

nation projects significant increases (at the 5% level) of < 2 inches/day at most of the stations549

except the stations in the south-east corner. The “median-pooled” combination projects signifi-550
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cant increases in the precipitation at stations located in the western half of the watershed. The551

magnitude of changes in the pooled models is similar to that in both of the median cases; but the552

pooled models project statistically significant changes (at the 5% level) at all stations across the553

watershed. For 50-year precipitation (Fig 11(b)), although most of the models project increases in554

the precipitation, only a few of them such as CanESM2.CanRCM4 (A), GFDL-ESM2M.CRCM5-555

OUR (D), and HadGEM2-ES.RegCM4 (G) project a statistically significant increase (at the 5%556

level) at a few stations. Noticeably, some models such as GFDL-ESM2M.RegCM4 (E) and MPI-557

ESM-LR.CRCM5-UQAM (J) project decreases in extreme precipitation at a few stations, though558

statistically not significant. Both of the median cases show increases (< 1 inch/day) in the precip-559

itation that are generally not significant. However, pooled models project significant increases (at560

the 5% level) of less than 2 inches/day in the precipitation at most of the stations. Our analysis561

of 24-hr precipitation for other return periods (e.g., for 2-year return period shown in the Sup-562

plemental Material Fig. S4) shows that pooled models project a significant increase in the 24-hr563

precipitation at more stations than the two median cases. We do not show the results for individual564

models beyond the 50-year return period as a rule of thumb is that data should not be extrapolated565

to evaluate return periods longer than the sample size (Sadegh et al. (2018); also from a personal566

communication with J.R.M. Hosking).567

Over the Florida peninsula (Fig. 12(a)), although a majority of models project an increase in 5-568

year precipitation at most of the stations, only a couple of them project significant increases at the569

5% level throughout the peninsula (CanESM2.CanRCM4 (A), GFDL-ESM2M.RegCM4 (E), and570

HadGEM2-ES.RegCM4 (G)). Interestingly, MPI-ESM-LR.CRCM5-OUR (I), one of the pooled571

models, projects a decrease in the precipitation. Both of the median cases show a significant in-572

crease at the 5% level in the precipitation between 0.5 and 1.5 inches/day at nearly half of the573

stations, mostly north of 27◦N. As noted before, the pooled models project a statistically signifi-574
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cant increase (< 2 inches) in the precipitation at all stations. For 24-hr precipitation with 2-year575

return period (Supplemental Material Fig. S5), pooled models project a statistically significant576

changes (at the 5% level) in 24-hr precipitation at more stations than the two median cases. For577

50-year precipitation (Fig. 12(b)), except model CanESM2.CanRCM4 (A), most of the models578

do not show significant changes at most of the locations. Some models that show an increase579

in the 5-year precipitation at some stations project a decrease in 50-year precipitation at those580

same stations (e.g., CanESM2.CRCM5-UQAM (C), GFDL-ESM2M.WRF (F), and MPI-ESM-581

LR.RegCM4 (K)). In contrast, MPI-ESM-LR.CRCM5-OUR (I) projects an increase in 50-year582

precipitation at some stations in the Kissimmee-Southern Florida watershed accompanied by a583

decrease in 5-year precipitation. Both of the median cases project an increase, though not signifi-584

cant, in 50-year precipitation. The pooled models show significant increases over most of stations585

across the peninsula.586

In summary, changes in 24-hr precipitation projected by both the “median-all” and “median-587

pooled” combinations are similar in magnitude and significance. Noticeably, over both study re-588

gions, pooled models project statistically significant increases at the 5% level in 24-hr precipitation589

for all return periods examined at more stations than in the two median approaches.590

3) CHANGES IN 24-HR PRECIPITATION IN THE POOLED MODELS591

To summarize the results from pooled models we show projected changes in 24-hr precipitation592

from the pooled models for 2, 5, 10, 25, 50, and 100 year return periods over the Susquehanna593

and Florida peninsula in Fig. 13. For the Susquehanna, Fig. 13(a), the pooled models project594

a significant increase at the 5% level in the precipitation for all return periods at almost all the595

stations (> 90%). The magnitude of change in the precipitation increases with increasing return596
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periods. This suggests that, on average, the Susquehanna is expected to observe a statistically597

significant increase in 24-hr precipitation for all return periods examined.598

For the Florida peninsula, the pooled models project statistically significant increases at the 5%599

level in 2–10 year precipitation at almost all stations (≥ 99%). For 25–100 year return periods600

the precipitation is expected to increase for at least two-thirds of the stations over the Florida601

peninsula.602

5. Summary603

In this work we propose a novel extension of current methods for computing multimodel IDF604

estimates. The methodology is based upon the assumption that each model represents separate605

realizations of the reality, and data from reasonably performing models represent samples from606

the “true” underlying data generating distribution. Therefore, pooling information from various607

models can help reduce bias and uncertainty in the IDF estimates. The motivation for this approach608

is that a larger sample from the ”true” underlying distribution provides more information for the609

enhanced fitting of the extreme value distribution to the data, as compared to lower sample sizes.610

We employed Monte Carlo simulations to test the proposed pooling method on the synthetic data611

derived from the distributions of the observed 1-, 6-, 12-, and 24-hr duration annual maximum612

precipitation. The simulation results suggest that pooling of annual maxima reduces both the bias613

and uncertainty in the estimated precipitation return periods across various durations, resulting614

from the enhanced distribution-fitting of the data.615

We applied the pooling methodology to estimate future changes in 24-hr precipitation for 2–100616

year return periods over the Susquehanna watershed and Florida peninsula in a suite of regional617

climate models from the NA-CORDEX project. The methodology involves the following steps:618

First, assess the historical performance of models in capturing spatial and temporal variability619
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of the observed annual maximum precipitation (AMP). The model skill for simulating spatial620

variability of long-term mean of the observed AMP (MAM) is assessed using a Taylor diagram,621

whereas, skill for simulating temporal variability of the AMP is assessed using the interannual622

variability skill score (IVSS). Second, bias correct the historical and future (RCP8.5) annual max-623

imum precipitation (AMP) data. Third, pool each year’s historical and RCP8.5 AMP data of624

reasonably performing models, and finally, quantify significant future changes in 24-hr precipita-625

tion for 2–100 year return periods by fitting a GEV distribution in a nonstationary framework. Our626

approach aims to address limitations of previous studies that estimate IDF. Through analysis of627

historical model performance and selection of reasonably performing models, we can enhance the628

credibility of future projections. This step is also important because model data are inherently un-629

certain, and the historical evaluation of models ensures that models reasonably (using an objective630

performance criteria) capture the statistics of the observed data, reducing the uncertainty across631

models. Pooling model data promotes a superior distribution fit and thereby more reliable IDF632

estimates. Lastly, our method avoids traditional mean or median based approaches for computing633

multimodel IDF estimates which result into a lessening of the intensity of probable extremes, and634

are also impaired by large estimation uncertainty around the median (mean) estimates.635

Our analysis indicates that most models exhibit negative bias in the mean annual maximum636

precipitation over the Florida peninsula, but there exists considerable variability across models in637

the magnitude, sign and pattern of biases in the MAM over the Susquehanna watershed. Models638

generally underestimate the interannual interquartile range (IQR) of the observed AMP in both the639

regions. Detailed analyses using Taylor diagram and IVSS metrics indicate that models do not per-640

form consistently across regions. For the Susquehanna, models that perform well in simulating the641

spatial pattern of the long-term mean AMP (MAM) also perform well in simulating the observed642

interannual temporal variability of the AMP and vice-versa. But, for the Florida peninsula, models643
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that perform well in simulating the temporal variability of the observed AMP fail to capture the644

spatial variability of the observed MAM and vice-versa. This indicates the importance of carefully645

selecting models for further analysis.646

Using the performance criteria defined in section 3, 9 models are selected for the Susquehanna647

and 6 models are selected for the Florida peninsula for estimating future changes in 24-hr pre-648

cipitation estimates. Our results show that the 24-hr precipitation estimates for 2-50 year return649

periods for both the historical and RCP8.5 simulations in pooled models have smaller estimation650

uncertainty than in individual models and in cases where medians of the 24-hr PF estimates are651

used. Moreover, over both study regions, pooled models project statistically significant increases652

at the 5% level in 24-hr precipitation for all return periods examines (2-50 years) at more stations653

than in the median approaches.654

Estimation of changes in 24-hr precipitation using the pooled models suggests that most of the655

stations (≥ 90%) in the Susquehanna are expected to observe a statistically significant (at the 5%656

level) increase in 24-hr precipitation for all return periods examined (2–100 years). Whereas, at657

least two-thirds of the stations over the Florida peninsula will observe statistically significant (at658

the 5% level) increases in 24-hr precipitation for all return periods examined.659

In this paper we analyze annual maximum precipitation for projecting changes in 24-hr660

precipitation-frequency estimates as generally PF estimates/ IDF curves are constructed using an-661

nual maximum precipitation data (e.g., NOAA Atlas 14 volume 1–9 reports). It will be interesting662

for future studies to analyze changes in seasonal PF estimates/ IDF curves (e.g., those based upon663

DJF or JJA annual maximum precipitation) as changes in seasonal precipitation extremes can be664

more meaningful when trying to understand mechanisms. We pose that the proposed methodology665

is useful for both scientists and stakeholders (particularly water managers). IDF estimates con-666

structed using this approach have the potential to inform climate policy and adaptation planning.667
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In the future, we intend to extend this methodology to additional regions across the continental668

US.669
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TABLE 1. List of NA-CORDEX models analyzed in this study

Identifier Driver GCM RCM Institution

A CanESM2 CanRCM4 CCCma

B CanESM2 CRCM5-OUR OURANOS

C CanESM2 CRCM5-UQAM UQAM

D GFDL-ESM2M CRCM5-OUR OURANOS

E GFDL-ESM2M RegCM4 Iowa State NCAR

F GFDL-ESM2M WRF U Arizona NCAR

G HadGEM2-ES RegCM4 Iowa State NCAR

H HadGEM2-ES WRF U Arizona NCAR

I MPI-ESM-LR CRCM5-OUR OURANOS

J MPI-ESM-LR CRCM5-UQAM UQAM

K MPI-ESM-LR RegCM4 Iowa State NCAR

L MPI-ESM-LR WRF U Arizona NCAR
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TABLE 2. Return period estimates from the Monte Carlo experiment performed on the synthetic data derived

from the observed 24-hr annual maximum precipitation data at stations in the Susquehanna watershed. StnId:

Station identifier, Rp.obs: return period in the observed data, Rp.S50: median return period estimated from 50

samples, Rp.S300: median return period estimated from 50×6 samples, aBias.S50: absolute difference between

Rp.S50 and Rp.obs, aBias.S300: absolute difference between Rp.S300 and Rp.obs. Units are in year.

971

972

973

974

975

StnId Rp.obs Rp.S50 Rp.S300 aBias.S50 aBias.S300

18-2060 4.56 4.86 4.64 0.29 0.08

30-0085 4.41 4.5 4.4 0.09 0.01

30-0687 7.08 7.36 7.24 0.29 0.17

30-1168 5.62 5.66 5.75 0.03 0.12

30-1173 4.42 4.24 4.48 0.18 0.06

30-1413 3.89 4.08 3.94 0.19 0.05

30-1752 3.63 3.86 3.68 0.23 0.06

30-1799 4.84 5.25 4.77 0.4 0.07

30-2610 5.91 6.09 5.91 0.18 0.01

30-3722 5.2 5.45 5.14 0.24 0.07

30-6085 5.87 5.98 5.91 0.11 0.04

30-7705 4.55 4.76 4.54 0.21 0.01

30-8594 5.29 5.47 5.32 0.18 0.03

36-0130 3.54 3.47 3.54 0.08 0.01

36-0457 4.86 5.01 4.93 0.14 0.07

36-0482 4.6 4.81 4.7 0.21 0.1

36-0656 5.99 6.15 5.97 0.16 0.02

36-0763 4.6 4.67 4.51 0.06 0.09

36-1087 5.64 6.06 5.6 0.42 0.04

36-1480 5.1 5.45 5.11 0.35 0.01

36-1519 5.8 5.88 5.97 0.08 0.17

36-1833 4.09 4.18 4.1 0.08 0

48



TABLE 2. Continued..

StnId Rp.obs Rp.S50 Rp.S300 aBias.S50 aBias.S300

36-2013 4.6 4.76 4.63 0.17 0.03

36-2629 5.06 5.54 5.1 0.48 0.04

36-3130 4.43 4.5 4.48 0.07 0.05

36-4992 5.57 5.72 5.57 0.14 0.01

36-5790 4.98 5 4.92 0.02 0.06

36-5915 5.09 5.13 5.03 0.04 0.06

36-6289 5.1 5.2 5.11 0.1 0.01

36-7727 5.08 5.16 5.02 0.08 0.06

36-7846 3.79 3.79 3.79 0 0

36-8073 6.62 6.88 6.56 0.26 0.06

36-8379 4.07 4.2 4.04 0.13 0.03

36-8449 5.29 5.49 5.42 0.2 0.13

36-8692 5.62 6.02 5.6 0.4 0.02

36-8905 3.74 3.82 3.75 0.07 0.01

36-8959 3.68 3.76 3.66 0.09 0.02

36-9705 5.1 5.15 5.2 0.04 0.1

36-9728 3.93 3.88 3.93 0.05 0

36-9823 5.17 5.18 5.19 0.01 0.02

36-9933 6.64 6.94 6.62 0.3 0.01

36-9950 3.98 4.16 3.97 0.18 0.01

median absolute bias over the watershed 0.15 0.04
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TABLE 3. As Table 2 but for the Florida peninsula.

StnId Rp.obs Rp.S50 Rp.S300 aBias.S50 aBias.S300

08-0228 4.22 4.3 4.23 0.08 0.01

08-0369 4.31 4.4 4.35 0.08 0.04

08-0478 5.25 5.38 5.26 0.13 0

08-0611 4.19 4.27 4.17 0.08 0.02

08-0945 6.39 6.48 6.39 0.09 0

08-0975 4.66 4.97 4.56 0.32 0.09

08-1046 4.56 4.57 4.53 0.01 0.02

08-1163 4.14 4.26 4.08 0.12 0.06

08-1276 4.46 4.44 4.45 0.02 0.01

08-1641 4.62 4.63 4.65 0.01 0.03

08-2008 5.65 5.97 5.67 0.33 0.02

08-2158 4.74 4.84 4.86 0.1 0.11

08-2229 6.69 6.95 6.74 0.26 0.05

08-2288 4.57 4.83 4.58 0.27 0.01

08-2850 4.47 4.51 4.5 0.04 0.03

08-2915 5.68 5.97 5.69 0.29 0.01

08-3020 5.86 5.76 5.97 0.1 0.11

08-3153 6.72 6.59 6.97 0.13 0.25

08-3163 3.96 4.07 3.95 0.11 0.01

08-3186 4.56 4.83 4.58 0.28 0.02

08-3207 5.41 5.61 5.43 0.2 0.02

08-3909 5.57 5.79 5.52 0.22 0.05

08-3956 6.65 6.85 6.63 0.2 0.02
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TABLE 3. Continued..

StnId Rp.obs Rp.S50 Rp.S300 aBias.S50 aBias.S300

08-4091 4.09 4.1 4.06 0.01 0.03

08-4273 5.25 5.7 5.35 0.45 0.1

08-4289 3.94 4.11 3.95 0.17 0.01

08-4625 4.88 4.95 4.81 0.08 0.07

08-5076 4.85 4.87 4.87 0.02 0.02

08-5612 3.87 3.98 3.89 0.12 0.02

08-5658 4.88 5.29 4.83 0.42 0.05

08-5663 5.5 5.98 5.51 0.47 0.01

08-5668 6.76 7.19 6.78 0.43 0.02

08-5895 6.07 6.41 6.27 0.34 0.2

08-5973 6.19 5.98 6.19 0.21 0

08-6065 4.54 4.65 4.55 0.1 0

08-6078 5.03 4.85 5 0.18 0.03

08-6323 5.17 5.24 5.26 0.07 0.09

08-6414 5.04 5.12 5.05 0.08 0.01

08-6485 4.66 4.76 4.69 0.1 0.02

08-6657 5.08 5.34 5.04 0.26 0.05

08-6880 5.32 5.57 5.31 0.25 0.01

08-7205 5.26 5.4 5.23 0.14 0.03

08-7293 4.54 4.93 4.64 0.39 0.1

08-7397 4.72 4.8 4.79 0.08 0.07

08-7760 4.41 4.55 4.45 0.13 0.03

08-7826 4.49 4.54 4.55 0.05 0.05

08-7851 4.92 5.11 4.95 0.19 0.03

08-7886 4.02 4.16 4.07 0.14 0.05

08-7982 4.8 4.65 4.73 0.15 0.07

08-8620 4.92 4.92 4.88 0.01 0.04
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TABLE 3. Continued..

StnId Rp.obs Rp.S50 Rp.S300 aBias.S50 aBias.S300

08-8780 5.21 5.23 5.2 0.02 0.01

08-8788 4.84 4.82 4.88 0.02 0.05

08-8824 3.94 4 3.97 0.06 0.03

08-8841 4.86 5 4.84 0.14 0.03

08-8942 4.79 4.89 4.87 0.1 0.08

08-9176 5.29 5.26 5.26 0.03 0.03

08-9219 5.69 5.87 5.66 0.18 0.03

08-9401 5.65 6.03 5.72 0.38 0.08

08-9525 5.14 5.36 5.08 0.21 0.06

08-9707 5.99 6.53 5.95 0.54 0.05

90-0107 4.46 4.49 4.49 0.03 0.03

90-0153 4.35 4.57 4.39 0.21 0.04

90-0162 4.3 4.52 4.37 0.22 0.07

90-0190 4.09 4.33 4.07 0.24 0.02

90-0204 5.07 4.89 5.03 0.18 0.04

90-0240 5.73 5.68 5.85 0.05 0.12

90-0249 4.11 4.18 4.15 0.07 0.04

90-0404 4.75 4.83 4.74 0.09 0

90-0579 5.17 5.26 5.23 0.08 0.05

90-0609 6.47 6.7 6.65 0.23 0.18

90-0622 5.23 5.36 5.28 0.13 0.06

90-0686 4.44 4.59 4.47 0.14 0.03

90-0766 3.81 3.83 3.84 0.02 0.03

96-0020 3.73 3.92 3.76 0.19 0.03

median absolute bias over the watershed 0.13 0.03
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Florida peninsula. . . . . . . . . . . . . . . . . . . . . . 611022

Fig. 8. Scatter diagrams of the product of correlation skill and normalized standard deviation (NSD)1023

(X-axis) against IVSS values (Y-axis). The horizontal and vertical dashed lines are drawn1024

using the selection criteria discussed in section 3. Models in the green shaded region are1025

selected for IDF estimation. Fig. (a): for the Susquehanna. Fig. (b): for the Florida1026

peninsula. . . . . . . . . . . . . . . . . . . . . . . . 621027

Fig. 9. Differences (RCP8.5 minus historical) in 24-hr mean annual maximum precipitation (MAM)1028

computed from raw (not bias-corrected) historical and RCP8.5 simulations. The MAM is1029

calculated for the period 1956–2005 in the historical simulations and for 2049–2098 in the1030

RCP8.5 simulations. Stippling shows differences significant at the 5% significance level.1031

Units are in inches/day. Fig. (a): for the Susquehanna. Fig. (b): for the Florida peninsula. . . 631032

Fig. 10. PF estimates of 24-hr precipitation totals in the bias-corrected historical and future simu-1033

lations. The red curve and yellow shading indicate 24-hr PF estimates and corresponding1034

90% confidence interval in the bias-corrected historical simulation. The blue curve and1035

green shading indicate 24-hr PF estimates and corresponding 90% confidence interval in the1036

bias-corrected RCP8.5 simulation. The “median-all” panel shows the median of 24-hr PF1037

estimates from all models, while the “median-pooled” shows the median of 24-hr PF esti-1038

mates from models that are used for pooling. “Pooled” shows 24-hr PF estimates computed1039

from pooling of better performing models. Models that are used for pooling are shown in1040

red letters in the top left corner of the figures. The X-axis indicates return periods in years1041

and the Y-axis indicates intensity in inches/day. Panel group (a): for the Susquehanna. Panel1042

group (b): for the Florida peninsula. . . . . . . . . . . . . . . . . 641043

Fig. 11. Changes in 24-hr precipitation for (a) 5-year and (b) 50-year return periods in the Susque-1044

hanna. Differences significant at the 5% significance level are shown as solid squares and1045

those not significant at 5% are shown as blank circles. The significance is computed from1046

the z-statistic as shown in Eqn. 6. Units are in inches/day. . . . . . . . . . . . 651047

Fig. 12. Same as in Fig. 11 but for the Florida peninsula. . . . . . . . . . . . . . 661048

Fig. 13. Changes in 24-hr precipitation for 2, 5, 10, 25, 50 and 100 years return periods computed1049

from pooled models. The differences that are significant at the 5% significance level are1050

shown as solid squares and those not significant at the 5% level are shown as blank circles.1051

The significance is computed from the z-statistic as shown in Eqn. 6. Units are in inches/day.1052

‘Signif. stns’ shows the percentage of stations at which the differences are significant. Panel1053

group (a): for the Susquehanna. Pooled models used: (C),(E), (F), (G), (H), (I), (J), (K) and1054

(L). Panel group (b): for the Florida peninsula. Pooled models used: (C), (E), (G), (I), (J)1055

and (K). . . . . . . . . . . . . . . . . . . . . . . . . 671056

54



FIG. 1. Return period estimates (years) from the Monte Carlo experiment (described in section 3(a)) per-

formed on 50 and 50×6 samples drawn from the observed 24-hr annual maximum precipitation data at stations

in the Susquehanna watershed. The red dashed line shows the observed (reference) return period. Bias is defined

as the difference between the median return period (black line inside a box) and the reference return period. Es-

timation uncertainty is defined as the interquartile range (IQR). The numbers in the legend indicate station IDs

in the Susquehanna watershed. The blue curve in the last panel shows the difference in the absolute median

biases estimated for 50 and 50×6 samples over all stations. A positive value along the blue curve indicates that

the absolute median bias estimated from 50 samples is bigger than that estimated from 50×6 samples.
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FIG. 2. Same as in Fig. 1 but for the Florida peninsula.
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FIG. 3. Bias in 24-hr mean annual maximum precipitation (MAM). Panel group (a): The top left panel shows

the observed MAM over the Susquehanna watershed and uses color scale along the right edge of the figure.

Other panels show bias in the MAM (model-observation) and use the color scale along the bottom edge of the

figure. The MAM is computed for the period 1950-2005 in the observational data and for 1951-2005 in model

data. Panel group (b): Same as for (a) but over the Florida peninsula. The polygon in panel group (b) represents

the boundary of the Kissimmee Southern Florida watershed. All units are in inches/day.
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FIG. 4. Taylor diagrams of 24-hr mean annual maximum precipitation (MAM) comparing station observations

and models. Panel (a): for the Susquehanna. Each diagram shows how closely the spatial pattern of the MAM in

the observation resembles that in a model. The reference point (observation) is marked as a solid green square.

Letters indicate the position of each model. The dashed black lines on the outermost semicircle indicate pattern

correlation of MAM between the observation and models. The blue dashed curves indicate the normalized

standard deviation (NSD) defined as spatial standard deviation of MAM in models and observation, normalized

by the spatial standard deviation in the observation. The standard deviation is measured as the radial distance

from the origin. The green dashed curves show the normalized root mean squared difference (NRMSD) defined

as root mean squared difference (RMSD) between model and observation normalized by the standard deviation

of the MAM observed. The NRMSD is measured as a distance from the reference point (solid green square).

Fig. (b): same as in (a) but for the Florida peninsula.
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FIG. 5. The ratio (model value over observed value) of interannual interquartile range (IQR) of 24-hr annual

maximum precipitation (AMP). Panel group (a): The top left panel shows the observed IQR of the AMP for

the Susquehanna, and uses the color scale along the right edge of the figure. The unit is inches/day. The other

panels show the interannual IQR ratio of the AMP in models and observation, and uses the color scale along the

bottom edge of the figure. The ratio is unitless. Panel group (b): Same as in (a) but for the Florida peninsula.
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FIG. 6. The interannual variability skill score (IVSS) as expressed in Eqn. 1. The IVSS is a unitless quantity.

The closer the IVSS value of a model to zero, the better is the performance of the model in simulating the

interannual variability of the observed AMP. The horizontal dashed line indicates the chosen IVSS threshold

(=1.13) as defined in the methods section. Fig. (a): for the Susquehanna. Fig. (b): for the Florida peninsula.
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FIG. 7. Scatter diagrams of normalized root mean square differences (NRMSD) as computed in the Taylor

diagram (X-axis) against IVSS values (Y-axis). “Corr” indicates the correlation between NRMSD and IVSS for

all models. Fig. (a): for the Susquehanna. Fig. (b): for the Florida peninsula.
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FIG. 8. Scatter diagrams of the product of correlation skill and normalized standard deviation (NSD) (X-axis)

against IVSS values (Y-axis). The horizontal and vertical dashed lines are drawn using the selection criteria

discussed in section 3. Models in the green shaded region are selected for IDF estimation. Fig. (a): for the

Susquehanna. Fig. (b): for the Florida peninsula.
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FIG. 9. Differences (RCP8.5 minus historical) in 24-hr mean annual maximum precipitation (MAM) com-

puted from raw (not bias-corrected) historical and RCP8.5 simulations. The MAM is calculated for the period

1956–2005 in the historical simulations and for 2049–2098 in the RCP8.5 simulations. Stippling shows differ-

ences significant at the 5% significance level. Units are in inches/day. Fig. (a): for the Susquehanna. Fig. (b):

for the Florida peninsula.
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FIG. 10. PF estimates of 24-hr precipitation totals in the bias-corrected historical and future simulations.

The red curve and yellow shading indicate 24-hr PF estimates and corresponding 90% confidence interval in

the bias-corrected historical simulation. The blue curve and green shading indicate 24-hr PF estimates and

corresponding 90% confidence interval in the bias-corrected RCP8.5 simulation. The “median-all” panel shows

the median of 24-hr PF estimates from all models, while the “median-pooled” shows the median of 24-hr PF

estimates from models that are used for pooling. “Pooled” shows 24-hr PF estimates computed from pooling

of better performing models. Models that are used for pooling are shown in red letters in the top left corner of

the figures. The X-axis indicates return periods in years and the Y-axis indicates intensity in inches/day. Panel

group (a): for the Susquehanna. Panel group (b): for the Florida peninsula.
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FIG. 11. Changes in 24-hr precipitation for (a) 5-year and (b) 50-year return periods in the Susquehanna.

Differences significant at the 5% significance level are shown as solid squares and those not significant at 5%

are shown as blank circles. The significance is computed from the z-statistic as shown in Eqn. 6. Units are in

inches/day.
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FIG. 12. Same as in Fig. 11 but for the Florida peninsula.
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FIG. 13. Changes in 24-hr precipitation for 2, 5, 10, 25, 50 and 100 years return periods computed from pooled

models. The differences that are significant at the 5% significance level are shown as solid squares and those not

significant at the 5% level are shown as blank circles. The significance is computed from the z-statistic as shown

in Eqn. 6. Units are in inches/day. ‘Signif. stns’ shows the percentage of stations at which the differences are

significant. Panel group (a): for the Susquehanna. Pooled models used: (C),(E), (F), (G), (H), (I), (J), (K) and

(L). Panel group (b): for the Florida peninsula. Pooled models used: (C), (E), (G), (I), (J) and (K).
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