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A B S T R A C T   

Simulated historical precipitation is evaluated for Coupled Model Intercomparison Project Phase 6 (CMIP6) 
models using precipitation indices defined by the Expert Team on Climate Change Detection and Indices. The 
model indices are evaluated against corresponding indices from the CPC unified gauge-based analyses of pre
cipitation over seven geographical regions across the contiguous US (CONUS). The regions assessed match those 
in recent US National Climate Assessment Reports. To estimate observational uncertainty, precipitation indices 
for three other observational datasets (HadEx2, Livneh and PRISM) are evaluated against the CPC analyses. Both 
the moderate and extreme mean precipitation intensities are overestimated over the western CONUS and 
underestimated in the areas of the Central Great Plains (CGP) in most CMIP6 models tested. Most CMIP6 models 
overestimate the mean and variability of wet spell durations and underestimate the mean and variability of dry 
spell durations across the CONUS. Biases in interannual variability of most of the indices have similar patterns to 
those in corresponding mean biases. The median and interquartile model spreads in CMIP6 model biases are 
clearly smaller than those in CMIP5 model biases for wet spell durations. Multimodel medians of CMIP6 (CMIP6- 
MMM) and CMIP5 (CMIP5-MMM) have similar biases in climatology and variability but biases tend to be smaller 
in CMIP6-MMM. Depending on the index, extreme precipitation is slightly better in parts of the eastern half of the 
CONUS in CMIP6-MMM, otherwise, the biases in climatology and variability are similar to CMIP5-MMM. CMIP6- 
MMM performs better than individual models and even observational datasets in some cases. Differences be
tween observational datasets for most indices are comparable to the CMIP6 interquartile model spread. The 
better-performing observational and model datasets are different in different parts of the CONUS.   

1. Introduction 

Studies suggest that global rising temperature results in more 
extreme and more intense precipitation events over midlatitudinal land 
areas, including the continental US (Tebaldi et al., 2006; Kharin et al., 
2007, 2013; Collins et al., 2013; Donat et al., 2013; Fischer and Knutti, 
2016; Rajczak and Sch€ar, 2017; Easterling et al., 2017; Prein et al., 
2017). These extreme events pose a significant threat to society and 
natural ecosystems and thus require in-depth analysis and investigation. 

In this paper we analyze indices related to precipitation extremes 
defined by the Expert Team on Climate Change Detection and Indices 
(ETCCDI) (Zhang et al., 2011). We apply those indices to recently 
available historical simulations from models involved in the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016). 
The ETCCDI indices have been developed to be a standardized set of 
metrics that sample weather and climate extremes. The ETCCDI indices 

mostly characterize moderate extremes that typically occur at least once 
a year (Zhang et al., 2011; Sillmann et al., 2013a). These indices have 
widely been used in investigating changes in regional and global climate 
extremes (Westra et al., 2013; Sillmann et al., 2013a; Donat et al., 2016; 
Barry et al., 2018; Vincent et al., 2018; Diaconescu et al., 2016, 2018), in 
detection and attribution studies (Zhang et al., 2013; Fischer and Knutti, 
2014; Mondal and Mujumdar, 2015; Easterling et al., 2016), and in the 
evaluation of climate indices in regional and global climate models 
(Jiang et al., 2015; Diaconescu et al., 2016, 2018). 

The CMIP6 historical simulations use forcings due to both the natural 
causes (such as volcanic eruptions and solar variability) and human 
factors (e.g. CO2 concentration, aerosols, and land use) over the period 
1850–2014. The historical simulations are useful in assessing model 
performance in simulating not only the mean climate but also extreme 
weather and climate (Flato et al., 2014). The historical simulations serve 
as important tools to determine consistency of climate model forcing 
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and sensitivity with the observational record, and also as benchmarks, 
along with control simulations, for detection and attribution studies 
(Eyring et al., 2016). These historical simulations are the ‘‘entry card’’ 
for all models participating in the CMIP6 project. 

The most popular approach for analyzing historical and future sim
ulations of models involved in large multimodel projects such as CMIP is 
the ‘‘multimodel ensemble (MME)’’ method. In one variant of MME all 
models are treated equally so the MME is represented by a simple mean 
or median of all participating models (Sillmann et al., 2013a, b; Agha
Kouchak et al., 2018; Ragno et al., 2018; Kharin et al., 2013). The other 
variant of MME uses a ‘‘weighted’’ average of participating models. The 
models are assigned weights based upon considerations such as each 
model’s performance in simulating observed climate and each model’s 
common lineage (Knutti et al., 2010; Flato et al., 2014). MME methods 
have been shown to have superior performance than individual models 
(Gleckler et al., 2008; Sillmann et al., 2013a; Miao et al., 2014; Park 
et al., 2016; Niu et al., 2018). However, models do not consistently 
simulate different variables over different regions of interest. Therefore, 
a model-by-model analysis is necessary for identifying reasonably per
forming models for a specific variable of interest and over a specific 
region. 

Despite global climate models having made substantial progress in 
recent decades (Edwards, 2011; Sillmann et al., 2013a; Flato et al., 
2014), they have considerable biases owing to coarse resolution, 
imperfect boundary conditions, poor parameterizations, misrepresen
tation of physical processes, etc. (Taylor et al., 2012; Knutti and 
Sedl�a�cek, 2013; Berg et al., 2013; Wang et al., 2014; van der Wiel et al., 
2016). Previous studies show that increases in horizontal resolution lead 
to more realistic representation of extreme daily precipitation (Wehner 
et al., 2014; van der Wiel et al., 2016). In a comprehensive study of 
extreme precipitation indices in CMIP5 models Sillmann et al. (2013a) 
show that the models, particularly over the North America, tend to 
simulate more intense precipitation and fewer consecutive wet days 
than their CMIP3 counterparts, indicating better representation of pre
cipitation characteristics possibly due to higher resolution. However, 
the overall uncertainty in simulating extreme precipitation indices 
across CMIP5 models was comparable to that across CMIP3 models 
despite that CMIP5 models had in general higher resolution and more 
comprehensive representation of carbon cycles, indirect aerosols effect 
etc. than their CMIP3 counterparts. Moreover, Kooperman et al. (2018) 
found that higher resolution does lead to improvements in high 
percentile rainfall intensity, but no corresponding improvements in 
moderate rain rate. Gibson et al. (2019) analyzed a suite of datasets 
including gridded observational and reanalysis products, CMIP5 models, 
and high resolution regional climate models with boundary conditions 
from CMIP5 models, and found that spread among both the observa
tional and model products for the annual counts of heavy precipitation 
days are higher in high elevation regions than in the other regions over 
the CONUS. Also, increased precipitation in high resolution models can 
often lead to overestimated extreme precipitation (Gibson et al., 2019). 
Wang et al. (2014) in an analysis of CMIP5 models show that improving 
the simulation of regional processes may not suffice for overall model 
performance because biases in one region can be linked with others at 
distant locations. Al-Yaari et al. (2019) found that warm biases in CMIP5 
models over the Central Great Plains in the CONUS are linked with 
negative biases in precipitation and soil moisture– soil moisture feed
back might be the main cause of interlinked biases and must be 
accounted for to better understand deficiencies of climate models. 
Models involved in CMIP6 have generally higher resolution, more 
evolved reconstruction of external conditions such as land use changes, 
and more consistent representation of the atmospheric aerosol forcing 
and land surface processes than their CMIP5 counterparts (Eyring et al., 
2016; Stouffer et al., 2017). However, without comprehensive investi
gation it is difficult to establish if improvements in CMIP6 model pro
tocols necessarily extend to improvements in the simulation of 
precipitation characteristics on all varying temporal and spatial scales. 

The broad objective of the paper is to evaluate how CMIP6 historical 
simulations capture the climatology and interannual variability of pre
cipitation indices at each model’s native resolution. The detailed ob
jectives are as follows. First, evaluate performance of models in 
simulating the climatology (using climatological mean as a measure) 
and interannual variability (using interannual interquartile range (IQR) 
as a measure) of the indices across the continental US (CONUS). Second, 
assess model performance for simulating precipitation using metrics 
over seven geographical regions (henceforth, NCA regions) outlined in 
the Fourth National Climate Assessment Report (Reidmiller et al., 2018). 
The metrics used in the study are based upon root-mean-squared error 
(RMSE) which captures the climatological mean error of the indices in 
space, and interannual variability skill score (IVSS) which measures the 
IQR in time of the indices. The results are presented in terms of ‘portrait 
diagrams’ for each region. Third, estimate overall model performance by 
combining RMSE and IVSS measures. The results are used to identify 
models whose performance is comparatively better or worse than the 
majority of models. Fourth, estimate the precipitation indices in various 
observational datasets to assess observational uncertainty associated 
with the indices. Fifth, compare the performance of the CMIP6 model 
ensemble with an ensemble from the Coupled Model Intercomparison 
Project Phase 5 (CMIP5). 

The emphasis of this work is on the evaluation of regional perfor
mance of individual models, which is of direct relevance to both 
stakeholders and scientists. Models’ performance vary considerably, and 
therefore proper evaluation of models is necessary for constructing 
multimodel ensemble projections. Assigning weights to models accord
ing to their skill may improve reliability of future projections (Knutti 
et al., 2010). Second, since models do not perform consistently across 
regions (Jiang et al., 2015), care should be taken in selecting models for 
regional analysis. Third, as argued in Zhang and Soden (2019), statis
tically downscaled projections of rainfall change do not reduce inter
model spread unless bias correction is applied to a subset of models 
selected, according to their ability to resolve the observed rainfall 
climatology. Thus historical evaluation is necessary for constraining the 
models used in future climate model projections. 

The remainder of the paper is summarized as follows. Section 2 de
scribes the observed and model data used in the study. Section 3 de
scribes methods and metrics used for assessing model performance. 
Section 4 discusses results of the study and section 5 summarizes the 
results. 

2. Data 

Daily precipitation data for CMIP6 and CMIP5 models are obtained 
from the CMIP6 (https://esgf-node.llnl.gov/search/cmip6/) and CMIP5 
archives (https://esgf-node.llnl.gov/search/cmip5/), respectively. The 
list of CMIP6 models, their agencies and nominal resolutions are 
mentioned in Table 1. The nominal resolution is the resolution of the 
grid on which data are reported in the CMIP6 archive (https://pcmdi. 
github.io/nominal_resolution/html/summary.html). For this study 
only models that have 250 km nominal resolution or better have been 
selected. The list of CMIP5 models used in the study is given in the 
Supplementary Material Table S1. Only one ensemble member from 
each model is considered when calculating indices. 

The reference observation-based dataset used in this study is the 
National Oceanic and Atmospheric Administration Climate Prediction 
Center Unified CONUS dataset (hereafter, CPC) provided by the NOAA/ 
OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at 
https://www.esrl.noaa.gov/psd/. The daily CPC dataset uses station 
data from the U.S. unified rain gauge dataset and is available on 0:25� �
0:25� grid over the CONUS. For ease of comparison the CPC data will be 
referred to as ‘‘reference’’ data. The CPC data is constructed by inter
polating the quality controlled station data using the optimal interpo
lation (OI) algorithm. The OI technique exhibits relatively stable 
performance statistics over regions covered by fewer gauges. Cross- 
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validation testing over the CONUS suggests that the bias in the CPC 
dataset is less than 0.5% relative to the mean gauge-observed precipi
tation over the CONUS (Chen et al., 2008). However, it is worth 
mentioning that performance of models in simulating extreme precipi
tation indices does depend upon choice of reference dataset, as noted in 
Sillmann et al. (2013a); Donat et al. (2014); Diaconescu et al. (2016); 
Herold et al. (2017); Gibson et al. (2019) and other studies. Therefore, 
we estimate precipitation indices in three other observational datasets to 
compare with the performance of climate models. Hadley Center Global 
Climate Extremes Index 2 (HadEx2) is a gridded dataset on 3:75∘� 2:5∘ 

grid produced by directly interpolating climate extreme indices calcu
lated at station locations onto a global grid (Donat et al., 2013). The 
Oregon State University Parameter-Elevation Regressions on Indepen
dent Slopes Model (PRISM) dataset uses station data together with a 
digital elevation model (DEM) to provide gridded daily precipitation 
data on 4 km resolution for the United States (Daly et al., 2008). PRISM 
uses a comprehensive linear precipitation–elevation correction scheme 
to avoid problems with the other interpolation schemes that rely heavily 
on interpolating data from nearby stations even though the neighbour
ing stations have important orographic differences. Livneh gridded daily 
precipitation dataset is derived from interpolating station data onto 
1/16 degree (e6km) resolution (Livneh et al., 2013). Livneh adjusts 
gridded precipitation for orographic effects using scaling procedure to 
an elevation-aware 1961–1990 precipitation climatology. Together 
HadEx2, Livneh and PRISM will be referred as ‘‘observational’’ datasets, 
and their performance will be evaluated against the reference dataset 
(CPC). Also, together observational and model datasets will be referred 
as ‘‘datasets.’’ In this study all datasets are evaluated over the 
1981–2005 period. It is worth noting that indices computed from 
station-based gridded datasets suffer from spatial-scale mismatch with 
indices calculated from climate models because the latter represent areal 
averages over a grid box than point estimates (Sillmann et al., 2013a). 
Because of this precipitation indices in station-based gridded data are 
expected to be higher than those from model output. 

3. Methodology 

3.1. Calculation of indices 

The ETCCDI precipitation indices analyzed in the study are listed in 
Table 2. These indices have been described in Zhang et al. (2011). The 
indices fall into four basic categories: absolute indices (PRCPTOT, 

Rx1day, Rx5day), threshold-based indices (SDII), duration indices 
(CDD, CWD), and percentile indices (R95p, R99p). For convenience in 
summarizing the results the indices PRCPTOT, SDII, Rx1day, Rx5day, 
R95p and R99p will be referred as intensity-based indices, and CDD, 
CWD will be referred as duration-based indices. All indices are calcu
lated over the 1981–2005 period. The percentile indices are calculated 
from the 1961–1990 base period. The indices are calculated on the 
native grid in both CMIP6 and CMIP5 models and the observation-based 
datasets. We also compute ‘‘multimodel median’’ across CMIP6 
(CMIP6-MMM) and CMIP5 (CMIP5-MMM) models for all indices. For 
this, the indices are calculated at each model’s native grid, and then 
interpolated to a common 2:8∘ � 2:8∘ grid. Finally, the median for 
‘‘mean’’ indices is calculated by computing median across all models. 
However, the same procedure can not be applied for estimating vari
ability of indices, because taking the median will cancel out much of the 
interannual variability. Therefore, the multimodel median for esti
mating interannual variability of indices is obtained by concatenating 
indices across all models, and then computing its interquartile range. 
These multimodel medians are treated as individual models, and their 
performance are compared with other models and observational data
sets. For comparison between the reference data (CPC) and other data
sets (observational and models), indices computed in the higher 
resolution dataset are interpolated to the coarser resolution dataset 
using first-order conservative remapping (Jones, 1999). Therefore, 
indices computed on the native 0:25� � 0:25� grid in the CPC are 
interpolated onto model grids (which are at coarser resolution than CPC) 
and HadEx2 grid (at 3:75∘ � 2:5∘ resolution). And, indices computed in 

Table 1 
Model institution, modeling agency, model name, and nominal resolution of CMIP6 historical global climate models. The nominal resolution is the resolution of the 
grid on which data are reported.  

Institution Modeling Agency Model Name Nominal 
resolution 

References 

CNRM-CERFACS Center National de Recherches M�et�eorologiques– Center Europ�een de Recherche et de 
Formation Avanc�ee en Calcul Scientifique, France. 

CNRM-CM6-1 250 km Voldoire (2018)   

CNRM-ESM2-1 250 km Seferian (2018) 
EC-Earth- 

Consortium 
EC- Earth Consortium EC-Earth3 100 km EC-Earth (2019a)   

EC-Earth3-Veg 100 km EC-Earth (2019b) 
IPSL L’Institut Pierre-Simon Laplace, France IPSL-CM6A-LR 250 km Boucher et al. (2018) 
MOHC Met Office Hadley Center, United Kingdom HadGEM3- 

GC31-LL 
250 km Ridley et al. (2019)   

UKESM1-0-LL 250 km Tang et al. (2019) 
BCC Beijing Climate Center, China Meteorological Administration, China BCC-CSM2-MR 100 km Wu et al. (2018)   

BCC-ESM1 250 km Zhang et al. (2018) 
MRI Meteorological Research Institute, Japan MRI-ESM2-0 100 km Yukimoto et al. 

(2019) 
NCAR National Center for Atmospheric Research, USA CESM2 100 km Danabasoglu et al. 

(2019)   
CESM2-WACCM 100 km Danabasoglu (2019) 

NOAA-GFDL NOAA/ Geophysical Fluid Dynamics Laboratory, USA GFDL-CM4 100 km Guo et al. (2018)   
GFDL-ESM4 100 km Krasting et al. (2018) 

SNU Seoul National University, South Korea SAM0-UNICON 100 km Park and Shin (2019)  

Table 2 
Precipitation indices used in this study. Wet days are defined as days with pre
cipitation � 1 mm. Dry days are defined as days with precipitation < 1 mm. Base 
period 1961–1990 is used to compute 95th and 99th percentiles of precipitation. 
For more details about the indices refer to Zhang et al. (2011).  

Index Description Unit 

PRCPTOT Annual total precipitation during wet days mm/year 
SDII Mean daily precipitation during wet days. mm/day 
CDD Annual maximum of cumulative dry days days 
CWD Annual maximum of cumulative wet days days 
Rx1day Annual maximum 1-day precipitation amount mm/day 
Rx5day Annual maximum 5-day precipitation amount mm/5day 
R95p Annual total precipitation from days > 95th percentile  mm/year 
R99p Annual total precipitation from days > 99th percentile  mm/year  
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PRISM and Livneh are interpolated to the CPC grid. Results will be 
summarized for the seven CONUS regions (NCA regions) formed by 
grouping states as done in Easterling et al. (2017). The seven regions are 
abbreviated NW (northwest), SW (southwest), NGP (northern Great 
Plains), SGP (southern Great Plains), MW (Midwest), SE (southeast), and 
NE (northeast) and shown in Fig. 1. 

3.2. Metric evaluation of datasets 

For metric evaluation of datasets (models and observations), we 
largely follow Gleckler et al. (2008) and Sillmann et al. (2013a). The 
performance of a dataset in reproducing the climatological mean of the 
reference (CPC) indices is evaluated using root-mean-squared-error 
(RMSE) defined as 

RMSEm;i¼

"
1
N
XN

n¼1
ðem;n;i � eo;n;iÞ

2

#1=2

; (1)  

where, em;n;i and eo;n;i represent climatological mean of an index i at a 
grid point n in a dataset m and the corresponding (interpolated CPC) 
observation o, respectively. N is the number of grid points in an NCA 
region. RMSEm;i is the RMSE of a dataset m for an index i. A dataset 
perfectly simulating the climatological mean of an index in the reference 
(CPC) data will have RMSE equal to zero. 

For an index i, relative performance of datasets in simulating the 
climatological mean are evaluated by computing the normalized RMSE 
metric defined as 

NRMSEm;i ¼
RMSEm;i � RMSEcmip6med;i

RMSEcmip6med;i
; (2)  

where, RMSEcmip6med;i is the median RMSE over all CMIP6 models 
(excluding multimodel median) for the index i. Thus, for an index i, a 
negative NRMSEm;i in a dataset indicates that the corresponding dataset 
performs better than the majority of CMIP6 models. Similarly a positive 
NRMSEm;i indicates that the corresponding dataset performs worse than 
the majority of CMIP6 models. The NRMSE for all indices and all data
sets are presented in the form of ‘‘portrait diagrams.’’ A CMIP6 model’s 
‘‘average’’ performance in simulating the mean indices is evaluated by 
taking median of its NRMSEs over all indices- we refer to this average 
statistic as model climate performance index (MCI). 

The performance of a dataset in simulating the interannual vari
ability of an observed index i is estimated using the ‘‘interannual 

variability skill score (IVSS)’’ defined as 

IVSSm;i ¼
1
N

XN

n¼1

�
σm;n;i

σo;n;i
�

σo;n;i

σm;n;i

�2

; (3)  

where σm;n;i and σo;n;i are the interquartile range (IQR) of an index i at a 
grid point n in a dataset m and the reference data (CPC) o, respectively. N 
is the total number of stations in an NCA region. IVSSm;i will be zero for a 
dataset perfectly simulating the reference IQR of an index i. The smaller 
the IVSS the better the dataset’s performance. The relative performance 
of datasets in simulating the interannual variability of an index i is 
evaluated by computing the normalized IVSS metric defined as 

NIVSSm;i¼
IVSSm;i � IVSScmip6med;i

IVSScmip6med;i
; (4)  

where, IVSScmip6med;i is the median IVSS over all CMIP6 models for the 
index i. Thus, for an index i, a negative NIVSSm;i in a dataset indicates 
that the corresponding dataset performs better than the majority of 
CMIP6 models. Similarly a positive NIVSSm;i indicates that the corre
sponding dataset performs worse than the majority of CMIP6 models. 
The NIVSS for all indices and all datasets are presented in the form of 
‘‘portrait diagrams.’’ A CMIP6 model’s ‘‘average’’ performance in 
simulating the interannual variability of the indices is evaluated by 
taking the median of its IVSSs over all indices- we refer to this average 
statistic as model variability index (MVI). The IVSS as a metric for model 
evaluation has been used in some previous studies (Chen et al., 2011; 
Jiang et al., 2015). 

The overall performance of CMIP6 models is evaluated by plotting a 
scatter diagram of MCI against MVI. A model that performs better than 
the majority of models will have both MCI and MVI values less than zero. 

It is worth noting that certain indices such as Rx1day and Rx5day do 
not follow a normal distribution. Therefore, ‘‘mean’’ does not neces
sarily indicate the middle of the distribution of these indices. In the 
present work we only report ‘‘mean’’ and their spatial patterns, and do 
not interpret these statistics based upon their underlying distributions. 
Moreover, taking area mean values will relax the normality requirement 
according to the central limit theorem. 

We also make a qualitative comparison of our results for mean 
indices for individual and median CMIP6 models with related CMIP5 
model medians shown in Sillmann et al. (2013a). Sillmann et al. (2013a) 
analyzed simulated precipitation indices for the 1981–2000 period over 
Western North America (parts of western Canada and western CONUS), 

Fig. 1. The seven CONUS regions used in the study. NW-Northwest, SW-Southwest, NGP-Northern Great Plains, SGP-Southern Great Plains, MW-Midwest, NE- 
Northeast, SE-Southeast. 
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Central North America (including the central CONUS) and Eastern North 
America (including the eastern CONUS). Notably, their results were 
compared with results from the HadEx2 dataset (Donat et al., 2013) 
among other reference datasets. Sillmann et al. (2013a) also compare 
with reanalyses, but here we only use their comparison with the HadEX2 
station-based gridded dataset. A direct one-to-one comparison of our 
results with Sillmann et al. (2013a) is not possible due to different 
regional areas and slightly different reference periods considered in both 
the papers. 

4. Results 

4.1. Climatology of indices 

Figs. 2–7 show biases in the climatological mean of PRCPTOT, CDD, 

CWD, SDII, Rx1day and R95p, respectively. The biases for Rx5day and 
R99p are shown in the Supplementary Material Figs. S1 and S2. The 
climatology of the indices in the observation and models are computed 
for the period 1981–2005. 

4.1.1. Annual total precipitation from wet days (PRCPTOT) 
Biases in the climatological PRCPTOT are shown in Fig. 2. All the 

three observational datasets: HadEx2, Livneh and PRISM exhibit biases 
in PRCPTOT that are mostly within �5% of the reference (CPC) clima
tology over most of the CONUS except over higher elevation areas of the 
NW and SW regions. A dry bias in HadEx2 over Rocky Mountain regions 
along the borders of NW and NGP regions may be attributed to its 
coarser resolution compared with CPC. 

Most models show a wet bias in PRCPTOT over the western half of 
the CONUS (NW, SW, western NGP) and the NE region. In particular, 

Fig. 2. Bias in the 1981–2005 time mean of 
annual total precipitation from days � 1mm 
(PRCPTOT). The first panel shows mean 
PRCPTOT in the reference (CPC) dataset on its 
native 0.25� x 0.25� grid and uses the color scale 
along the right edge of the figure. The other 
panels show bias (dataset minus CPC) in mean 
PRCPTOT on each dataset’s native grid and use 
the color scale along the bottom edge of the 
figure. Units are in mm/year. (For interpretation 
of the references to color in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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MRI-ESM2-0, IPSL-CM6A-LR, CNRM-CM6-1 overestimate PRCPTOT by 
more than 100% over the western CONUS. Models such as BCC-CSM2- 
MR, BCC-ESM1 and SAM0-UNICON show a dry bias (10–60%) in the 
SE region. Noticeably, some models such as BCC-CSM2-MR, CESM2, 
CESM2-WACCM, CNRM-ESM2-1, SAM0-UNICON and UKESM1-0-LL 
show prominent dry bias over the Central Great Plains (CGP) region. 
The dry bias in the CGP region, a long standing problem, was also 
prominent in CMIP5 models (Lin et al., 2017; Al-Yaari et al., 2019). The 
dry bias is attributed to inaccurate simulations of mesoscale convective 
systems due to problematic convective parameterizations in models (Lin 
et al., 2017; Dai et al., 1999; Liang et al., 2007). The magnitude of biases 
as a proportion of the reference mean PRCPTOT is generally bigger over 
the western CONUS than over the eastern CONUS. Elsewhere, the 
magnitudes of biases are within �20% of the observed climatological 

PRCPTOT. A notable feature is that models with the same parent insti
tution/agency tend to have similar biases (spatial structure, sign and 
magnitude) in PRCPTOT. This is generally true for the other indices as 
well. For instance, both Beijing Climate Center models BCC-CSM2-MR 
and BCC-ESM1 have wet biases in the western half of the CONUS and 
a strong dry bias in the Southeast region. Similarly, NCAR models 
CESM2 and CESM2-WACCM have a wet-dry-wet pattern in biases going 
from the west to east across the CONUS. 

The last two panels in the bottom of Fig. 2 show biases in CMIP6 and 
CMIP5 multimodel median ensembles, respectively. The spatial struc
ture of biases is similar in pattern in both ensembles. Both the CMIP6- 
MMM and CMIP5-MMM show wet biases over most of the CONUS 
except over the borders of the SGP and SE regions including Florida. 
However, the magnitudes of the biases are reduced in CMIP6-MMM over 

Fig. 3. As Fig. 2 but for bias in consecutive dry days (CDD). Units are in days.  
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all areas in the CONUS. 

4.1.2. Consecutive dry days (CDD) 
Fig. 3 shows biases in climatological mean consecutive dry days 

(CDD). All the observational datasets show good agreement with the 
reference dataset (CPC) as the biases in the observational datasets are 
within �5% of the reference climatology. Both HadEx2 and Livneh 
overestimate reference CDD (0 � 10 days) across most of the CONUS. 
Livneh overestimates CDD by 5 � 10 days along the west coast in Cali
fornia. In contrast, PRISM largely underestimates CDD over most of the 
NW, SW (0 � 25 days), and some parts of NGP regions. 

As is apparent, almost all models underestimate CDD by 10–40% 
over most of the CONUS (negative bias). The negative bias varies with 
the magnitude of the climatological CDD. Nonetheless, some models, 

such as the CNRM, EC-Earth3, GFDL models, UKESM1-0-LL and BCC- 
ESM1 overestimate CDD in the middle of the SW region. SAM0- 
UNICON is the only model that shows significant overestimation 
(20–40%) of CDD in the Southeast region. 

When comparing the multimodel medians in CMIP5 and CMIP6, it 
appears that both generations of models underestimate (by 5–60%) the 
reference CDD over most of the CONUS (mainly in the western CONUS) 
similar to Sillmann et al. (2013a). Noticeably, biases over the Central 
Great Plains have improved by around 20% in CMIP6-MMM over 
CMIP5-MMM. This CDD bias indicates that models tend to have more 
frequent precipitation (� 1mm/day) than in observations. This issue has 
been a persistent problem in climate models for some time (Stephens 
et al., 2010) that has not been significantly improved in CMIP6 models. 

Fig. 4. As Fig. 2 but for bias in consecutive wet days (CWD). Units are in days.  
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4.1.3. Consecutive wet days (CWD) 
As shown in Fig. 4, HadEx2 underestimates the reference mean CWD 

by 20–40% across the CONUS– with the larger underestimation occur
ring along the Rocky Mountains and near the SE coastal area. Interest
ingly, CWD is overestimated over most of the CONUS in Livneh (10 �
40%), but underestimated in PRISM datasets (5 � 20%). The better 
agreement in CWD climatology between CPC and PRISM are also 
observed in Gibson et al. (2019). 

Almost all models overestimate the reference CWD over most of the 
CONUS. The primary exception is the Midwest, where a majority of 
models (BCC-CSM2-MR, CESM2, CESM2-WACCM, CNRM-CM6-1, 
CNRM-ESM2-1, SAM0-UNICON, HadGEM3-GC31-LL and UKESM1-0-LL 
(largest)) instead show a negative bias. Another exception is along the 
NW coast where the CPC CWD is high. This general overestimation of 

CWD across CONUS is consistent with the underestimation of CDD noted 
in Fig. 3, and indicates that models rain more frequently than in ob
servations. Interestingly, the model BCC-ESM1 overestimates both CDD 
and CWD over the Southwest, and SAM0-UNICON overestimates both 
over the Southeast region; this indicates that both dry and rainy days 
tend to persist for longer in those models over those respective regions. 
The model IPSL-CM6A-LR overestimates CWD by more than twice the 
reference climatological CWD over the SE region. 

Notably, CMIP6-MMM projects smaller biases in CWD over most of 
the CONUS than its CMIP5 counterpart� the largest reduction occurs in 
the NW, SW, NGP and SE regions. However, CWD is still overestimated 
in both the multimodel median CMIP5 and CMIP6 models over most of 
the CONUS except over the Midwest where CWD is slightly under
estimated (0 � 10%) in CMIP6-MMM and overestimated (5 � 40%) in 

Fig. 5. As Fig. 2 but for bias in simple intensity index (SDII). Units are in mm/day.  
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CMIP5-MMM. CMIP5 models, even when used as boundary conditions 
to higher resolution regional models (each regional model including the 
whole CONUS) also have a tendency to overestimate CWD (Gibson et al., 
2019). So, increased resolution does not eliminate this problem. 

4.1.4. Mean precipitation during wet days (SDII) 
Biases in mean SDII are shown in Fig. 5. As is apparent, HadEx2 

overestimates reference climatological SDII by 20 � 40% throughout 
the CONUS. Interestingly, PRISM and Livneh present a contrasting pic
ture here � Livneh underestimates SDII over most of the CONUS but 
most prominently over the eastern half of the CONUS comprising the 
NGP (eastern half), SGP, MW, SE and NE regions (10 � 40%), whereas 
PRISM overestimates SDII over the regions mentioned above (5 � 20%). 
Both HadEx2 and PRISM datasets underestimate CWD, but overestimate 

SDII indicating that these datasets on an average get more precipitation 
during wet days than the reference dataset. Whereas, Livneh over
estimates CWD but underestimates SDII indicating that it observes less 
precipitation during wet days than the reference. 

Most of the models generally show dry bias (> 2mm/day) over SE, 
MW and both Great Plains regions of the CONUS. The dry bias is 
generally bigger in the SE regions (20 � 40%). This pattern of dry bias in 
CMIP6 is consistent with the dry bias exhibited by CMIP5 models in 
comparison to the HadEX2 dataset (Sillmann et al., 2013a). As was 
explained for PRCPTOT, the dry bias in SDII in these regions may be 
associated with persistent issues with convective parameterizations. 
When expressed as a proportion of the reference values, models repre
sent SDII better than PRCPTOT, as biases in SDII are generally smaller 
(within �20%) than biases in PRCPTOT. When compared with biases in 

Fig. 6. As Fig. 2 but for bias in annual maximum 1-day precipitation amount (Rx1day). Units are in mm/day.  
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PRCPTOT, CDD and CWD (Figs. 2–4), regions of dry bias in SDII largely 
coincide with areas of dry bias in PRCPTOT, positive bias in CWD 
(overestimation of cumulative wet days) and negative bias in CDD 
(underestimation of cumulative dry days). Therefore, on average, 
models precipitate more frequently but they precipitate less in magni
tude than in the observations. In contrast, some models (CNRM-CM6-1, 
CNRM-ESM2-1, IPSL-CM6A-LR and MRI-ESM2-0) exhibit positive (wet) 
bias in SDII over the NE, NW, and SW regions coinciding with the areas 
of positive bias in PRCPTOT and CWD and negative bias in CDD � this 
suggests that these models precipitate more during wet days over those 
regions than in the observations. Moreover, the large underestimation of 
SDII in CMIP5 and CMIP6 models over the southern and southeastern 
areas of the CONUS persists in the finer resolution regional climate 
models with boundary conditions from CMIP5 GCMs (Fig. S5 in Gibson 

et al. (2019)). 
Both the CMIP5 and CMIP6 multimodel medians show dry bias in 

SDII over the SGP, SE and adjoining areas over the NGP and MW regions. 
However, multimodel median results show that the dry bias is reduced 
in both the spatial extent and magnitude in CMIP6 models than in 
CMIP5 models. Both CMIP5-MMM and CMIP6-MMM show wet bias in 
SDII over the NW, SW, and western parts of the NGP regions. Also, 
CMIP6 models are wetter over the NE regions than their CMIP5 coun
terparts. Notably, when compared with HadEx2, CMIP5-MMM (and 
CMIP6-MMM) do show consistently wet bias across the CONUS as was 
shown in Sillmann et al. (2013a). This indicates that inconsistency 
across observations affects model performance. 

Fig. 7. As Fig. 2 but for bias in R95p. Units are in mm/year.  
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4.1.5. Annual maximum of 1-day precipitation (Rx1day) 
Fig. 6 shows biases in the mean Rx1day. As is apparent, HadEx2 

generally overestimates (5 � 40%) the reference Rx1day over most of 
the CONUS except over part of the NW where it underestimates Rx1day. 
In contrast, Livneh mostly underestimates the reference Rx1day clima
tology over most of the CONUS– the underestimation is much bigger 
(20 � 40%) over the eastern CONUS regions of NGP, SGP, MW, SE and 
NE. PRISM simulates the reference Rx1day climatology very well mostly 
within �5% of the reference climatology. For Rx5day (Supplementary 
Material Fig. S1) all the observational datasets simulate the reference 
Rx5day reasonably well within �10% of the reference climatology. 
Strikingly, HadEx2 and Livneh exhibit smaller biases (magnitude and 
proportion) in Rx5day than in Rx1day. 

In CMIP6 models the spatial pattern of biases in Rx1day is in general 
similar to that in SDII. For instance, most models show dry bias in the 
south (SGP and SE) and in the MW regions. Similarly, models over
estimate Rx1day in the NW and SW regions of the western CONUS. 
Models tend to disagree in the MW region where some models such as 
CNRM, EC-Earth, and CESM groups of models underestimate Rx1day, 
whereas some others such as the Hadley center models and IPSL-CM6A- 
LR overestimate Rx1day. It is notable that in contrast to other models 
both Hadley center models HadGEM3-GC31-LL and UKESM1-0-LL 
exhibit a large wet bias in Rx1day over most of the CONUS, excluding 
the NW and SW regions. 

When compared to CMIP5 models’ median values, the patterns of 
biases in Rx1day are similar in CMIP6-MMM and CMIP5-MMM. Both the 
sets of models generally overestimate the reference Rx1day over NW and 

SW regions, and underestimate over SE, SGP, and adjoining areas of NGP 
and MW regions. However, biases are smaller in CMIP6-MMM than in 
CMIP5-MMM, most notable in the MW and SE regions. 

4.1.6. Annual total precipitation over heavy precipitation days (R95p) 
Fig. 7 shows biases in the climatological R95p. Since the base period 

for computing R95p is 1961–1990 and PRISM data is available only from 
year 1981, R95p is not calculated for PRISM. Biases in HadEx2 are 
within �10% of the reference R95p. HadEx2 captures R95p within �5% 
of the reference R95p in the NE and SE regions. Whereas, Livneh 
generally underestimates the reference R95p by 5 � 20% over the 
CONUS except over the NW and SW regions. The biases (both positive 
and negative) are larger over the NW and SW regions. 

Most of the models overestimate R95p over the NE and the western 
CONUS including NW, SW, NGP and parts of SGP regions � a couple of 
models such as MRI-ESM2-0, IPSL-CM6A-LR overestimate R95p by more 
than 100% over these regions. A majority of the models (e.g., BCC- 
CSM2-MR, BCC-ESM1, CESM2-WACCM, MRI-ESM2-0 and SAM0- 
UNICON) underestimate R95p over SE region indicating that these 
models tend to have lower total heavy precipitation than in the obser
vations. The magnitude of biases as a proportion of the observed mean 
are bigger (> 50% of the mean indices) over the western CONUS. The 
patterns of biases in R95p are similar to biases in PRCPTOT, SDII, 
Rx1day and Rx5day. 

Both the CMIP6-MMM and CMIP5-MMM overestimate the reference 
R95p over the NW, SW, NGP and NE regions, whereas, they underesti
mate R95p over southern parts of states Mississippi, Alabama and 

Fig. 8. Box-and-whisker plots for spatially averaged biases (model minus CPC) for the 1981–2005 time means of precipitation indices. The box indicates interquartile 
model spread (range between 25th and 75th quantiles, the thick black line in a box indicates multimodel median and whiskers show total intermodel range. The 
circles indicate outliers. Pink and blue boxes correspond to CMIP6 and CMIP5 models, respectively. HadEx2, Livneh and PRISM are indicated by red, blue and green 
stars, respectively. Note that the biases have been computed on each model’s native grid. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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Georgia, and Florida. Interestingly, CMIP6-MMM overestimates R95p 
over the MW in contrast to CMIP5-MMM which underestimates R95p 
over the region. The biases in R95p in CMIP5 models are consistent with 
that shown in Sillmann et al. (2013a). 

4.1.7. Regional analysis of climatologies in CMIP6 ensemble 
Fig. 8 summarizes spatially averaged climatological biases in data

sets (models and observations) with respect to the reference (CPC) 
dataset over the seven NCA regions and the CONUS in the form of box- 
and-whisker plots. The box indicates interquartile model spread (range 
between 25th and 75th quantiles), the thick black line in a box indicates 
the multimodel median, and whiskers show total intermodel range. The 
dots represent models that are ‘‘outliers’’. The median bias represents 
typical bias in a multimodel ensemble. Pink and blue boxes correspond 
to CMIP6 and CMIP5 models, respectively. HadEx2, Livneh and PRISM 
are indicated by red, blue and green stars, respectively. The figure also 
informs about regional variations in the performance of the multimodel 
ensemble. 

It is apparent that among observational datasets, PRISM best 
matches the reference dataset for all the indices (green stars are closest 
to zero). Interestingly, HadEx2 overestimates both the reference SDII 
(also noted in Sillmann et al. (2013a)) and Rx1day � and the over
estimation is bigger than that in the 75th quantile of the intermodel 
spread in both the CMIP5 and CMIP6 ensembles. Similarly, the under
estimation of the reference CWD in HadEx2 is bigger than that in all of 
CMIP5 and CMIP6 models. On the other hand, Livneh underestimates 
SDII (except in the NW) and Rx1day over most of the regions; the un
derestimation is comparable to that in the median of CMIP5 and CMIP6 
models. A close examination reveals that the inconsistency among 
observational datasets is larger than the CMIP6 intermodel spread for 
CWD, Rx1day and SDII (most pronounced) over most of the regions. 
Moreover, for indices like Rx5day, R95p and R99p, the uncertainty 
across observational datasets is comparable to the interquartile model 
spread in CMIP6 models over most of the regions. A similar behaviour 
was observed in previous studies of Sillmann et al. (2013a) and Gibson 
et al. (2019). 

As indicated by the median of the interquartile range, most of the 
CMIP6 models overestimate PRCPTOT over all regions across the 
CONUS except the SGP region. Also, the majority of CMIP6 models 
underestimate SDII, Rx1day, and Rx5day over middle CONUS 
comprising MW, SGP, and SE regions. Noticeably, almost all CMIP6 
models underestimate CDD and overestimate CWD over all regions of 
the CONUS. An estimation of the interquartile model range from biases 
as a fraction of the reference climatology suggests that CMIP6 models 
display larger uncertainty in simulations of PRCPTOT, Rx5day, R95p 
and R99p over the western CONUS including the NW, SW and NGP re
gions than over the other regions. One possible explanation of consistent 
wet bias in all intensity-based indices such as PRCPTOT, SDII, RX1day, 
Rx5day, R95p and R99p over the western CONUS could be that the 
horizontal resolution in models is insufficient to capture the topography 
and hence rain shadowing effect adequately. 

When comparing median biases in CMIP5 and CMIP6, it appears that 
barring a few exceptions (such as Rx5day over NE) CMIP6 median biases 
are smaller for SDII, CDD, CWD and Rx1day over almost all regions and 
for Rx5day, R95p and R99p over the regions of SGP, MW, and SE. 
Notably, as indicated by the interquartile range and total intermodel 
spread, uncertainty in the simulation of CWD is considerably reduced 
over all regions in CMIP6 models than in CMIP5 models. For all other 
indices, interquartile range in CMIP6 models are similar to (and often 
less than) that in CMIP5 models. 

4.2. Interannual variability of indices 

Figs. 9–14 show biases in the interannual variability of PRCPTOT, 
CDD, CWD, SDII, Rx1day and R95p, respectively. The bias is measured 

in terms of the ratio of the interannual interquartile range (IQR) of a 
dataset index over the IQR of the reference (CPC) index. The ratios for 
Rx5day and R99p are shown in the Supplementary Material Figs. S3 and 
S4. 

4.2.1. Annual total precipitation from wet days (PRCPTOT) 
Fig. 9 shows the ratio of simulated to observed interannual inter

quartile range of PRCPTOT. All the three observational datasets gener
ally underestimate the reference IQR of PRCPTOT over the CONUS. 
However, HadEx2 generally underestimates the reference IQR by 10 �
50%, whereas Livneh and PRISM simulate the reference IQR within �
10% of the reference IQR. 

In general, nearly half of the CMIP6 models such as CNRM-CM6-1, 
CNRM-ESM2-1, GFDL-CM4, GFDL-ESM4, IPSL-CM6A-LR, MRI-ESM2- 
0 and SAM0-UNICON tend to overestimate the reference interannual 
variability over the SW region. In contrast, HadGEM3-GC31-LL and 
UKESM1-0-LL are the only models that underestimate the reference IQR 
over the SW region. A majority of models generally underestimate the 
reference IQR in much of the SE region. A comparison with biases in the 
mean PRCPTOT (Fig. 2) indicates that models tend to overestimate 
(underestimate) variability in the reference PRCPTOT at locations 
where they overestimate (underestimate) the mean bias by large 
amount. 

When comparing the multimodel medians, both the CMIP6 and 
CMIP5 multimodel medians overestimate the reference IQR over much 
of the CONUS. However, biases in interannual variability are slightly 
reduced in CMIP6-MMM than in CMIP5-MMM. Both the CMIP6 and 
CMIP5 multimodel medians tend to overestimate (underestimate) 
interannual variability of PRCPTOT where they overestimate (under
estimate) the mean bias in PRCPTOT by 20% or more. 

4.2.2. Consecutive dry days (CDD) 
Fig. 10 shows the ratio of simulated to observed interannual IQR of 

CDD. As is apparent both Livneh and PRISM simulate the variability in 
the reference CDD within �20%. Whereas, HadEx2 underestimates the 
variability by 10 � 30% throughout the CONUS. When compared with 
biases in the mean CDD (Fig. 3), it reveals that HadEx2 overestimates 
mean values but underestimates variability of the reference CDD. 
Whereas, both Livneh and PRISM generally overestimate (underesti
mate) variability of CDD at locations where they overestimate (under
estimate) the mean. 

CMIP6 models generally underestimate variability in the reference 
CDD over most of the CONUS except in the interior of the SW region. 
BCC-ESM1 overestimates (mostly 10 � 30%) the variability in the 
reference CDD over much of the SW, and SAM0-UNICON overestimates 
the variability over the NW region. The underestimation is larger and 
more widespread in models such as MRI-ESM2-0, GFDL-ESM4 and BCC- 
CSM2-MR. A closer examination reveals that Fig. 3 (bias in mean CDD) 
and Fig. 10 (ratio of IQR in CDD) have similar patterns more often than 
not. Specifically, models often underestimate (overestimate) the 
observed interannual IQR with large magnitude in areas where they 
tend to underestimate (overestimate) the mean CDD by large 
magnitude. 

The CMIP6 multimodel median ensemble generally underestimates 
variability in CDD over most of the CONUS except interiors of the SW 
region and adjoining areas of MW, SGP and SE regions. Whereas, the 
CMIP5 multimodel median ensemble overestimates CDD over NW, SW 
and much of the SE, including areas of SGP. 

4.2.3. Consecutive wet days (CWD) 
Fig. 11 shows biases in IQR of CWD. HadEx2 underestimates vari

ability in CWD by 10 � 50% throughout the CONUS. Whereas, Livneh 
generally overestimates and PRISM exhibits a mix of underestimation 
and overestimation of variability in the reference CWD. Once again, the 
patterns of overestimation and underestimation of variability in CWD in 
observational datasets are similar to those in the mean biases (Fig. 4). 
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As seen for the other indices, models tend to overestimate (under
estimate) the variability in the reference CWD at locations where they 
overestimate (underestimate) mean biases in CWD. IPSL-CM6A-LR 
overestimates the observed variability by more than 50% in the South
ern CONUS and by 200% or more over the SE region. SAM0-UNICON 
also overestimates the variability in CWD over the southern CONUS 
including SE, SGP and parts of SW region. 

CMIP5-MMM overestimates the variability in CWD throughout the 
CONUS � the overestimation is larger (1.3 � 5 times) in the southern 
CONUS including SE, SGP and parts of SW; and NGP regions. Whereas, 
CMIP6-MMM overestimates (1.1 � 1.5 times) the variability in CWD in 
the SE, SGP, SW, and parts of the NW and NGP regions; and un
derestimates the variability in the MW region (10 � 30%). The over
estimation of CWD over the NW, SW, SGP and SE regions are smaller in 

the CMIP6 models as compared to that in the CMIP5 models. 

4.2.4. Mean precipitation during wet days (SDII) 
Fig. 12 shows the ratio of simulated to observed interannual IQR of 

SDII. It is apparent that even though HadEx2 overestimates the mean 
reference SDII, it often underestimates the variability in the reference 
SDII by 10–30%. Whereas, Livneh generally underestimates the vari
ability in SDII over most of the CONUS except along higher elevations of 
the West, notably the Rockies, consistent with the pattern of the mean 
SDII over most of the CONUS. Similarly, PRISM generally overestimates 
the variability at places where it overestimates the mean bias in SDII and 
vice-versa. PRISM generally underestimates the variability in SDII over 
the NW, NGP and SW regions. 

A majority of the models underestimate IQR in the reference SDII by 

Fig. 9. Ratio of interannual interquartile range 
(IQR) of PRCPTOT in datasets (observations and 
models) over that in the reference dataset (CPC). 
The IQR is calculated for the period 1981–2005. 
The first panel shows IQR of PRCPTOT (unit: 
mm/year) in the CPC dataset on its native 0.25� x 
0.25� grid and uses the color scale along the right 
edge of the figure. The other panels show ratio of 
IQR (datasets over CPC) in PRCPTOT on each 
dataset’s native grid and use the color scale along 
the bottom edge of the figure. The ratio is unit
less. (For interpretation of the references to color 
in this figure legend, the reader is referred to the 
Web version of this article.)   
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10 � 50% across most parts of the CONUS. In contrast, the Hadley center 
models HadGEM3-GC31-LL and UKESM1-0-LL have a mixture of above 
and below reference IQR values over the eastern CONUS including NGP, 
SGP, MW, NE, and SE; they still underestimate the reference IQR of SDII 
over much of the NW and SW. 

The CMIP5 multimodel median (CMIP5-MMM) overestimates the 
observed variability in SDII over the NW, SW, SE, NE regions, whereas, it 
underestimates the variability in NGP, MW and SGP. CMIP6-MMM 
shows smaller magnitude of biases in the SDII variability over the 
CONUS– and a less consistent sign except over the SGP region. 

4.2.5. Annual maximum of 1-day precipitation (Rx1day) 
Fig. 13 shows the ratio of simulated to observed interannual IQR of 

Rx1day. As seen before, HadEx2 mostly underestimates (10–50%) the 

variability in Rx1day throughout the CONUS except parts of the SW, 
although it overestimates the mean bias in Rx1day (Fig. 6). Livneh 
generally underestimates (10–50%) the variability throughout the 
CONUS except along the border areas of NW and NGP regions. In 
contrast, PRISM simulates a mix of underestimated and overestimated 
Rx1day variability throughout the CONUS. For Rx5day (Supplementary 
Material Fig. S3) HadEx2 continues to underestimate variability in 
Rx5day but Livneh and PRISM simulate variability within �30% of the 
reference IQR across the CONUS. PRISM mostly underestimates the 
variability over the NW and SW regions, whereas Livneh overestimates 
the variability over those regions. Patterns of simulated variability in 
Livneh and PRISM are similar to those in the mean biases. 

CMIP6 Models in general show large variability in the representation 
of IQR of the reference Rx1day. A couple of models (e.g., BCC-CSM2- 

Fig. 10. Same as in Fig. 9 but for CDD IQR and ratios. The unit of IQR shown in the first panel is days. The ratio is unitless.  
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MR, CESM2, CESM2-WACCM, GFDL-CM4, GFDL-ESM4, IPSL-CM6A-LR, 
MRI-ESM2-0 and SAM0-UNICON) generally overestimate the observed 
reference IQR over the SW region. Whereas, a majority of them (e.g., 
CNRM-CM6-1, EC-Earth3, EC-Earth3-Veg, MRI-ESM2-0, CESM2, 
CESM2-WACCM, and GFDL-ESM4 etc.) underestimate the variability 
over SE, SGP, and MW regions. In contrast to the other models, UKESM1- 
0-LL and HadGEM3-GC31-LL exhibit larger overestimation (> 30%) 
consistently across the CONUS excluding the NW and SW regions. 
Models generally overestimate (underestimate) variability in Rx1day at 
locations where they overestimate (underestimate) mean climatology of 
Rx1day by large amount (Fig. 6). 

Both the CMIP5-MMM and CMIP6-MMM underestimate variability 
in the reference Rx1day over the CONUS except the SW, and parts of the 
NW and NGP regions. The bias in simulated variability is a little reduced 

in CMIP6 multimodel median from CMIP5 multimodel median. 
Comparing with biases in the mean Rx1day (Fig. 6), the patterns of 
biases in the variability and the mean are similar. 

4.2.6. Annual total precipitation over heavy precipitation days (R95p) 
The ratio of simulated to observed interannual IQR of R95p is shown 

in Fig. 14. As happens for the other indices HadEx2 underestimates 
variability in R95p and R99p (shown in the Supplementary Material 
Fig. S4) across the CONUS. Livneh simulates a mix of underestimated 
and overestimated variability in the reference R95p over the CONUS 
except the NW and SW regions. Livneh largely underestimates vari
ability in the reference R99p over most of the CONUS except SW and NW 
regions (Supplementary Material Fig. S4). 

As was the case in Rx1day, models show a large spread in the 

Fig. 11. Same as in Fig. 9 but for CWD IQR and ratios. The unit of IQR shown in the first panel is days. The ratio is unitless.  
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simulation of variability in R95p. A majority of models such as IPSL- 
CM6A-LR, MRI-ESM2-0, SAM0-UNICON, GFDL-ESM4, CNRM-ESM2-1 
and CNRM-CM6-1 show overestimation of R95p variability over the 
NW, SW, and NGP regions. Some other models (e.g., BCC-CSM2-MR, 
CESM2, CESM2-WACCM, MRI-ESM2-0, SAM0-UNICON) underesti
mate the variability over the Central Great Plains regions comprising 
areas of SGP, SE, NGP, and MW regions. The patterns of model biases in 
R99p variability are similar to those of R95p variability and shown in 
the Supplementary Material Fig. S4. 

Both the CMIP5-MMM and CMIP6-MMM overestimate the vari
ability of the reference R95p over the western CONUS including NW, 
SW, and NGP regions and underestimate over other regions. However, 
the overestimation of variability in R95p is generally smaller in 
magnitude in CMIP6 models than in CMIP5 models. Models generally 

overestimate (underestimate) variability in R95p and R99p at locations 
where they overestimate (underestimate) mean climatology of R95p and 
R99p, respectively (Fig. 7 and Supplementary Material Fig. S2). 

4.2.7. Regional analysis of biases in interquartile range of the indices in the 
CMIP6 ensemble 

Fig. 15 shows box-and-whisker plots for spatially aggregated (me
dian) ratios of simulated to observed interquartile range of the indices. 
The ratios are aggregated for each region separately. As was found for 
mean biases, PRISM best matches the variability of the reference indices 
among observational datasets. HadEx2 underestimates the reference 
variability of all indices at least by 20% over all regions and the CONUS. 
Notably, HadEx2 underestimates the IQR of both the moderate precip
itation (PRCPTOT) and extreme precipitation intensities (Rx1day, 

Fig. 12. Same as in Fig. 9 but for SDII IQR and ratios. The unit of IQR shown in the first panel is mm/day. The ratio is unitless.  
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Rx5day, R95p and R99p) and CWD over all regions, more than the other 
two observational datasets and the majority of CMIP6 models. More
over, HadEx2 severely underestimates the IQR for indices like CWD, 
R95p and R99p, more than almost all models in CMIP5 and CMIP6. With 
a few exceptions (such as for R99p over SW, and Great Plains regions), 
the spread among observational datasets is comparable to the CMIP5 
and CMIP6 interquartile model spreads over nearly all regions. 

A majority of CMIP6 models underestimate PRCPTOT variability 
over all regions except SW and NGP. As indicated by medians, a majority 
of CMIP6 and CMIP5 models underestimate variability in SDII, CDD, and 
Rx1day over all regions across the CONUS, whereas, they overestimate 
CWD over all regions. Indices like very wet days (R95p) and extremely 
wet days (R99p) are overestimated over the western CONUS areas of 
NW, SW, and NGP. When comparing median biases in CMIP5 and CMIP6 

models, CMIP6 median variability biases are reduced over all regions for 
SDII, CDD (except MW, SE and NE), CWD, and Rx1day. The interquartile 
model spread is smaller for CWD and CDD in CMIP6 models than in 
CMIP5 models� the most notable reduction occurs for CWD over 
southern regions. However, both the interquartile model spread and 
total model spread are increased in CMIP6 models for Rx1day over all 
regions except NW and SW. A close examination reveals that most of the 
CMIP5 and CMIP6 models underestimate both the mean climatology 
and interannual variability of CDD and overestimate the mean clima
tology and interannual variability of CWD over all regions including 
over the CONUS. 

Fig. 13. Same as in Fig. 9 but for Rx1day IQR and ratios. The unit of IQR shown in the first panel is mm/day. The ratio is unitless.  
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4.3. Metric evaluation of models 

Fig. 16 shows the portrait diagram of normalized RMSEs in the 
1981–2005 climatologies of indices over the seven NCA regions and over 
the CONUS. For a given index and dataset, the normalized RMSE 
(NRMSE) is computed by normalizing the respective RMSE with respect 
to the CMIP6 median RMSE as shown in Eqn. (2). Thus for a given index, 
a dataset with the negative NRMSE performs better than the majority of 
CMIP6 models. The metric MCI shown in the top row of each panel is the 
median of NRMSEs over all indices for that dataset (model or observa
tion). Hence, datasets are ranked by the MCI value. 

The figure indicates that PRISM performs the best among the 
observational datasets and models over most of the regions except NW 

and NGP regions. This is not surprising considering that both PRISM and 
CPC are high resolution datasets derived from station data. HadEx2 also 
performs generally well over all regions when compared to CPC; it even 
outperforms PRISM over NW and NGP regions and Livneh over all re
gions when averaged (MCI) over the indices. HadEx2 does struggle with 
SDII, CWD, and/or Rx1day in most regions as indicated above. Notably, 
the observational datasets do not perform necessarily better than models 
across regions. For instance, PRISM performs poorer than CMIP6-MMM, 
CESM2, and CESM2-WACCM, over the NW. Similarly, Livneh performs 
poorer than many CMIP6 models including CMIP5-MMM and CMIP6- 
MMM particularly over NW, SW, and NE regions. However, when 
averaged over the CONUS, the three observational datasets perform 
better than any other model or model combinations. This indicates that 

Fig. 14. Same as in Fig. 9 but for R95p IQR and ratios. The unit of IQR shown in the first panel is mm/year. The ratio is unitless.  
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although being high resolution observational datasets, they do not 
perform consistently well across spatial scales and across regions. 

It is apparent that models do not perform consistently well over all 
regions across the CONUS, which is perhaps not surprising given that 
different regions have different dominant precipitation processes. 
Nonetheless, this inconsistency causes the best average performance 
over the indices for the CONUS region to be less than the best perfor
mance in individual regions. For example, Hadley center models 
HadGEM3-GC31-LL and UKESM1-0-LL are among the top performers 
over the NW and SW regions but are among the worst performers over 
NGP, MW, and NE regions. This may indicate that atmospheric rivers 
and the North American Monsoon are well simulated in these models, 
although a definite conclusion on this matter would require the evalu
ation of precipitation indices that depend on source process. Similarly, 
CESM2 and CESM2-WACCM are among the best models over the NW, 
and SW regions but are among the worst performers over the SGP re
gion. The model IPSL-CM6A-LR is among the poorest four performers 
over all NCA regions and the CONUS except over the SGP region. 
Notably, CMIP6-MMM performs better than any individual model over 
most of the regions except SGP and NE regions. CMIP6-MMM performs 
better (that is, closer to CPC) than some observational datasets in some 
regions (but not over the whole CONUS). For instance, CMIP6-MMM 
outperforms PRISM over the NW; HadEx2 over the MW and Livneh 
over NW, SW, NGP, MW, and NE regions. CMIP6-MMM has better per
formance than its CMIP5 counterpart over all regions including the 
CONUS except the NE. For the CONUS as a whole, CMIP6-MMM 

outperforms other models. Over the whole CONUS Earth3Veg, CESM2, 
and Earth3 are the best performers whereas BCC-ESM1, MRI-ESM2- 
0 and IPSL-CM6A-LR performed poorest. 

Fig. 17 shows the portrait diagram of normalized IVSSs over the 
seven NCA regions and over the CONUS as well. For a given index the 
normalized IVSS (NIVSS) in a dataset is computed in a similar way as the 
NRMSE (Eqn. (4)). Thus for a given index, a dataset with the negative 
NIVSS performs better than the majority of CMIP6 models. The metric 
MVI shown in the top row of each panel is the median of NIVSSs over all 
indices for that dataset. Similar to Fig. 16, datasets are ranked by their 
MVI score. HadEx2, whose NRMSE value was lower than most of the 
other datasets, shows large NIVSS values over all regions except NGP 
and NW; this indicates that despite simulating the reference mean 
indices very well, HadEx2 does not capture the interannual variability of 
the reference indices very well. Strikingly, it is among the worst per
formers (observational or model) over the eastern CONUS (MW, SE and 
NE) and SGP regions. Also, PRISM is outperformed by the CMIP6 mul
timodel medians over all regions except the SGP. As a result, the un
certainty across observational datasets is comparable to that in CMIP6 
models. 

As for the individual CMIP6 models, none of the models performs 
consistently well or poorly across all regions. For instance, CESM2 is 
among the top performers over the NW and SW regions but performs in 
the middle or worse than a majority of CMIP6 models compared here 
over all other regions. The CMIP6 multimodel medians outperform all 
the other models over all regions including the CONUS. The 

Fig. 15. Box-and-whisker plots for spatially aggregated (median) ratio of interquartile range of indices (model over CPC) over the period 1981–2005. The box 
indicates interquartile model spread (range between 25th and 75th quantiles, the thick black line in a box indicates the multimodel median and whiskers show total 
intermodel range. The circles indicate outliers. Pink and blue boxes correspond to CMIP6 and CMIP5 models, respectively. HadEx2, Livneh and PRISM are indicated 
by red, blue and green stars, respectively. The ratios have been computed on each model’s native grid. The ratio is unitless. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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performance of CMIP5 and CMIP6 multimodel medians are similar 
across all regions, however CMIP6-MMM has slightly improved simu
lated variability than its CMIP5 counterpart. 

4.4. Overall model ranking 

Fig. 18 shows scatter diagrams of model climate performance index 
(MCI) versus model variability index (MVI) in different regions for the 
CMIP6 models examined here. These indices are defined in the methods 

section. The horizontal dashed and vertical lines are the median of MVI 
and MCI values, respectively. A model on the left of the vertical dashed 
line has overall performance better than the median of overall perfor
mance of models in simulating climatologies of the indices. Similarly, a 
model below the horizontal line has overall performance better than the 
median of overall performance of models in simulating interannual 
variability of the indices. Thus models that lie in the ‘‘green shaded’’ 
quadrant have performance better than median performance in simu
lating both the climatology and interannual variability of the indices. 

Fig. 16. Portrait diagrams of normalized RMSEs in the 1981–2005 climatologies of indices. For an index the normalized RMSE (NRMSE) is computed by normalizing 
the respective RMSE with respect to the median of RMSEs across CMIP6 models as shown in Eqn. (2). For a dataset the MCI shown in the top row of each panel is the 
median of NRMSEs over all indices for that dataset. NRMSE is unitless. 
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The number in the parenthesis in each panel shows the correlation be
tween MCI and MVI. The correlation is intended to determine if there is a 
linear relationship between how well a model simulates the mean 
climatology of indices and its ability to capture interannual variability of 
the indices. The models that generally perform well in simulating the 
climatologies of the indices also perform well in simulating the inter
annual variability of the indices (and vice versa) over the SW, NGP, SGP 
and over the CONUS. Over the NGP, MW, NE and NW regions, a majority 
of models are concentrated along a horizontal median line indicating 

that models have similar skills in simulating the observed variability of 
the indices there. The CMIP6 multimodel median performs the best in 
simulating the mean and interannual variability of indices in the refer
ence data (CPC) over all regions and the CONUS. 

Finally, Table 3 lists reasonably performing CMIP6 models (models 
that are in the green shaded zone in Fig. 18) split into ‘‘dry’’ and ‘‘wet’’ 
in each NCA region. The reasonably performing models are identified 
(Fig. 18) as models whose MCI and MVI values are less than the corre
sponding median values. The models are identified as ‘‘dry’’ or ‘‘wet’’ 

Fig. 17. Portrait diagrams of normalized IVSSs of indices over the 1981–2005 period. For an index the normalized IVSS (NIVSS) is computed by normalizing the 
respective IVSS with respect to the median of IVSSs across CMIP6 models as shown in Eqn. (4). A model MVI shown in the top row of each panel is the median of 
IVSSs over all indices for that model. NIVSS is unitless. 
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based on whether the normalized bias (Nbias) in PRCPTOT is negative or 
positive, respectively. The Nbias is computed as follows: 

Nbiasm¼
1
N
XN

n¼1

Pm;n � Po;n

Po;n
; (5)  

where Pm;n and Po;n are the mean PRCPTOT in a model m and CPC 
dataset at a grid point n, respectively. N is the total number of grid points 
in a region. 

5. Summary and discussion 

This paper has evaluated the performance of CMIP6 historical model 
simulations and three observational datasets (HadEx2, Livneh and 
PRISM) in simulating the climatologies and interannual variability of 
several extreme precipitation indices drawn from ETCCDI. The perfor
mance of each model and observational dataset is evaluated against the 
NOAA CPC unified gauge based precipitation dataset. The aggregate 
performances of these CMIP6 models are compared with those of CMIP5 
models. 

This paper has the following objectives. First, to evaluate perfor
mance of CMIP6 models, on their native grids, in simulating the cli
matologies (using climatological mean as a measure) and interannual 
variabilities (using interannual interquartile range (IQR) as a measure) 
of precipitation indices across the contiguous US (CONUS). Second, to 
estimate model performance using two metrics applied to each 

precipitation index. These metrics are calculated over the CONUS and 
seven geographical regions (NCA regions) used in the Fourth National 
Climate Assessment Report. The two metrics used in the study are root- 
mean-squared error (RMSE) that measures model performance in 
simulating the climatological mean of each index and interannual 
variability skill score (IVSS) that measures models performance in 
simulating the IQR of each index. Third, to estimate overall model 
performance RMSE and IVSS are considered together in scatter plots. 
Fourth, assess the performance of the observational datasets against the 
NOAA CPC dataset. Fifth, to compare the performance of a CMIP6 
multimodel median ensemble with that of a corresponding CMIP5 
multimodel median ensemble. The results are presented with spatial 
maps, box-and-whisker plots, and ‘portrait diagrams’ for each region. 
This study provides a foundation for more comprehensive process-based 
assessment of the reasons behind the observed precipitation biases. 

Our analysis suggests that among observational datasets PRISM best 
matches the mean and interannual variability of the reference (CPC) 
indices. This is not surprising considering that both PRISM and CPC are 
derived from station-based observations. As noted in previous studies (e. 
g., Sillmann et al. (2013a)), observational datasets do not perform 
consistently across different indices and regions. For example, HadEx2 
considerably underestimates the reference mean CWD (by 20 � 40%, 
Fig. 4), and overestimates both the mean SDII and Rx1day, mostly by 
20 � 40% (Figs. 5 and 6) across the CONUS. Whereas, Livneh over
estimates the reference mean CWD (10 � 40%; Fig. 4), and un
derestimates the referennce mean SDII (10 � 40%; Fig. 5) and Rx1day 

Fig. 18. Scatter diagram of model climate 
performance index (MCI) versus model 
variability index (MVI). The indices are 
defined in the methods section. The hori
zontal dashed and vertical lines are the me
dian of MVI and MCI values, respectively. 
Thus, a model on the left of the vertical line 
has overall performance better than the 
median of overall performance of models in 
simulating climatologies of the indices. 
Similarly, a model below the horizontal line 
has overall performance better than the 
median of overall performance of models in 
simulating interannual variability of the 
indices. Thus models that lie in the bottom- 
left quadrant (green shaded zone) have per
formance better than median performance in 
simulating both the climatologies and inter
annual variability of the indices. The 
numbers in the parenthesis in each panel 
show the correlation between MCI and MVI; 
it indicates the linear relationship between 
how well a model simulates the mean 
climatology of indices and its ability to 
capture inter-annual variability of the 
indices. Models from the same parent insti
tution are shown in the same color (except 
models shown in black). (For interpretation 
of the references to color in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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(20 � 40%; Fig. 6) across most of the CONUS. HadEx2 severely un
derestimates the interannual variability of all reference indices across 
the CONUS � even more than most of the CMIP5 and CMIP6 models for 
indices like PRCPTOT, CWD, R95p, and R99p, etc. (Figs. 9, 11, 14,15, 
and Supplementary Material Fig. S4). As a result, the differences across 
observational datasets in matching most of the reference mean indices 
(most pronounced for SDII, CWD and Rx1day) are comparable to those 
of the CMIP6 interquartile model spreads over most of the CONUS 
(Fig. 8). Similarly, spread across the observational datasets in matching 
the reference variability of all indices is comparable to or even larger 
than the CMIP6 interquartile model spread (Fig. 15). 

As indicated by the median of spatially aggrgated CMIP6 biases (not 
to be confused with multimodel medians), most of the CMIP6 models 
overestimate the reference mean CWD and underestimate the reference 
mean CDD across most of the CONUS (Fig. 8). Also, most models un
derestimate variability of the reference CDD, SDII, and Rx1day; and 
overestimate the reference variability of CWD across much of the 
CONUS (Fig. 15). Moreover, individual CMIP6 models generally over
estimate (underestimate) interquartile range (IQR) of the reference 
indices (Figs. 9-14) wherever they overestimate (underestimate) mean 
biases by large magnitude– the only exception to this is the IQR of SDII 
which is underestimated by almost all models over most of the CONUS 
(Figs. 2-7). 

Comparisons of spatially aggregated biases in the mean climatology 
(Fig. 8) and interannual variability (using interquartile model spread as 
a measure; Fig. 15) in CMIP5 and CMIP6 models suggest that the 
interquartile model spread is considerably smaller in CMIP6 models 
than in CMIP5 models for CDD and CWD (most pronounced). Notably, 
though the median CMIP6 model-to-CPC IQR ratio is smaller for Rx1day, 
the corresponding interquartile model spread is significantly bigger in 

CMIP6 than in CMIP5 models (Fig. 15). For all other indices the median 
biases and interquartile model spreads in CMIP6 are similar to their 
CMIP5 counterparts. 

Both the CMIP5 (CMIP5-MMM) and CMIP6 (CMIP6-MMM) multi
model medians show similar patterns of biases in the mean indices 
(Figs. 2-7). For instance, for both the moderate (PRCPTOT, SDII) and 
extreme precipitation intensities (Rx1day, Rx5day, R95p and R99p) the 
multimodel medians show wet biases over much of the western CONUS 
(NW, SW, NGP) and dry biases in much of the SGP and SE regions. 
Overall, the CMIP6 multimodel median (CMIP6-MMM) exhibits improve
ments over the CMIP5-MMM in mean biases for all indices over most of the 
regions. Also notable, biases in CWD over most of the CONUS and the dry 
bias over the Great Plains areas are considerably smaller in CMIP6- 
MMM than their CMIP5 counterparts. Similarly, biases in the interan
nual variability of the reference indices are similar but often smaller in 
magnitude in the CMIP6-MMM than in the CMIP5-MMM (Figs. 9-14). 

A metric evaluation of datasets using normalized root-mean-squared 
error (NRMSE; Fig. 16) and normalized interannual variability skill 
score (NIVSS; Fig. 17) suggests that observational datasets do not 
necessarily perform better than models across the CONUS. Also, models 
do not perform consistently over all regions across the CONUS. As was 
observed in previous studies (e.g., Sillmann et al. (2013a)), CMIP6 
multimodel median outperforms individual models over most of the 
CONUS. In some cases the CMIP6 multimodel median has smaller 
NRMSE values than the observational datasets. The NIVSS values of 
CMIP6-MMM are the smallest over most of the regions, suggesting that 
CMIP6-MMM simulates the reference variability better than any of the 
other datasets. For all indices (except for PRCPTOT over NW) the NIVSS 
value of CMIP6-MMM is slightly smaller (but comparable in magnitude) 
than that of CMIP5-MMM over all regions. A notable and previously 
known result is that models with the same parent institution or agency 
tend to have similar biases (spatial structure, sign and magnitude). 

Finally, the overall performance of each model is estimated by the 
model climate performance index (MCI) and model variability index 
(MVI). MCI measures a model’s ‘‘average’’ performance in simulating 
the mean indices. MCI is defined from median NRMSEs calculated over 
all indices for each model. The average performance of time variations 
of the indices is measured by the model variability index (MVI). MVI is 
defined from median NIVSSs calculated, over all indices for each model. 
Models that generally perform relatively better in simulating the 
climatology of indices also perform relatively better in simulating 
interannual variability of the indices over SW, NGP, SGP, and over the 
CONUS (Fig. 18). 

Comparing the results of this study with those in Sillmann et al. 
(2013a) finds that the spatial pattern and magnitude of mean biases in 
indices such as SDII, CDD, CWD, Rx5day and R95p are similar in both 
the CMIP5 and CMIP6 models. When comparing our CMIP6 results 
against high resolution regional climate models with boundary condi
tions from the same GCMs as in the CMIP5, it appears that the over
estimation of CWD in climate models has improved but remains a 
problem that has not been solved with increasing resolution. Further, 
the large underestimation of the mean reference SDII in the CMIP6 
models over the central and southeastern areas of the CONUS was also 
found in the finer resolution regional climate models with boundary 
conditions from CMIP5 GCMs (Gibson et al., 2019). 

While this study summarizes performance of models using a metric- 
based approach, it should be recognised that models are complex in 
nature, and summarizing the performance of models using two metrics is 
quite challenging and may be inadequate. Several factors such as choice, 
and quality of: the reference dataset, performance metrics, etc. affect the 
performance of models as noted in Gleckler et al. (2008), Sillmann et al. 
(2013a), Diaconescu et al. (2018) and other studies. Also, this study 
examines only a subset of models involved in CMIP5 and CMIP6 ex
periments. Inclusion of more models may change some of the results of 
the study. Despite these limitations, this study provides useful first-order 
information about models’ performance in simulating precipitation 

Table 3 
List of reasonably performing models (models that are in the green shaded zone 
in Fig. 18) identified as ‘‘dry’’ or ‘‘wet’’ in each region. The models have overall 
performance better than the median performance (both MCI and MVI values are 
less than median MCI and MVI, respectively). The models are categorized as wet 
or dry as shown in Eqn. (5).  

Region Model Name MCI MVI Nbias Category 

NW CESM2 � 0.25 � 0.34 0.2 wet  
HadGEM3-GC31-LL � 0.21 � 0.11 0.33 wet  
UKESM1-0-LL � 0.15 � 0.33 0.37 wet 

SW CESM2 � 0.26 � 0.2 0.29 wet  
CESM2-WACCM � 0.3 � 0.37 0.23 wet  
EC-EARTH3-Veg � 0.01 -0.05 0.47 wet  
GFDL-CM4 � 0.04 � 0.05 0.55 wet  
HadGEM3-GC31-LL � 0.26 � 0.25 0.21 wet 

NGP CESM2-WACCM � 0.13 � 0.01 � 0.02 dry  
EC-Earth3 � 0.18 � 0.03 0.33 wet  
SAM0-UNICON � 0.2 � 0.05 0.08 wet 

SGP CNRM-CM6-1 � 0.1 � 0.17 0.04 wet  
CNRM-ESM2-1 � 0.21 � 0.13 � 0.01 dry  
EC-Earth3-Veg � 0.04 � 0.12 0.08 wet  
HadGEM3-GC31-LL � 0.03 � 0.04 0.03 wet  
IPSL-CM6A-LR � 0.02 � 0.05 0.16 wet  
UKESM1-0-LL � 0.24 � 0.25 � 0.04 dry 

MW BCC-CSM2-MR � 0.04 � 0.15 � 0.05 dry  
CNRM-CM6-1 � 0.21 � 0.06 0.004 –  
CNRM-ESM2-1 � 0.1 � 0.02 � 0.06 dry  
GFDL-CM4 � 0.1 � 0.06 0.14 wet 

SE BCC-CSM2-MR � 0.14 � 0.31 � 0.23 dry  
CNRM-CM6-1 � 0.22 � 0.16 0.05 wet  
CNRM-ESM2-1 � 0.21 � 0.13 0.07 wet  
HadGEM3-GC31-LL � 0.06 � 0.48 0.06 wet  
UKESM1-0-LL � 0.07 � 0.36 0.07 wet 

NE BCC-CSM2-MR � 0.13 � 0.09 � 0.001 –  
CESM2-WACCM � 0.28 � 0.05 0.13 wet  
CNRM-ESM2-1 � 0.04 � 0.13 0.23 wet 

CONUS CNRM-ESM2-1 � 0.05 � 0.22 0.26 wet  
GFDL-CM4 � 0.01 � 0.07 0.25 wet  
UKESM1-0-LL � 0.08 � 0.15 0.14 wet  
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extremes and may be complemented with more detailed 
process-oriented diagnosis of precipitation. As discussed in Zhang and 
Soden (2019), statistically downscaled projections of rainfall change do 
not reduce intermodel spread unless bias correction is applied to a subset 
of models selected, according to their ability to resolve the observed 
rainfall climatology. Therefore this study is potentially useful for iden
tifying CMIP6 models for constrained future climate model projections. 
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