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Abstract
The present work evaluates historical precipitation and its indices defined by the Expert Team on Climate Change Detec-
tion and Indices (ETCCDI) in suites of dynamically and statistically downscaled regional climate models (RCMs) against 
NOAA’s Global Historical Climatology Network Daily (GHCN-Daily) dataset over Florida. The models examined here are: 
(1) nested RCMs involved in the North American CORDEX (NA-CORDEX) program, (2) variable resolution Community 
Earth System Models (VR-CESM), (3) Coupled Model Intercomparison Project phase 5 (CMIP5) models statistically down-
scaled using localized constructed analogs (LOCA) technique. To quantify observational uncertainty, three in situ-based 
(PRISM, Livneh, CPC) and three reanalysis (ERA5, MERRA2, NARR) datasets are also evaluated against the station data. 
The reanalyses and dynamically downscaled RCMs generally underestimate the magnitude of the monthly precipitation 
and the frequency of the extreme rainfall in summer. The models forced with CanESM2 miss the phase of the seasonality 
of extreme precipitation. All models and reanalyses severely underestimate both the mean and interannual variability of 
mean wet-day precipitation (SDII), consecutive dry days (CDD), and overestimate consecutive wet days (CWD). Metric 
analysis suggests large uncertainty across NA-CORDEX models. Both the LOCA and VR-CESM models perform better 
than the majority of models. Overall, RegCM4 and WRF models perform poorer than the median model performance. The 
performance uncertainty across models is comparable to that in the reanalyses. Specifically, NARR performs poorer than 
the median model performance in simulating the mean indices and MERRA2 performs worse than the majority of models 
in capturing the interannual variability of the indices.

Keywords ETCCDI precipitation indices · Regional climate models precipitation assessment · ERA5 · NARR  · MERRA2 · 
NA-CORDEX · LOCA · Florida extreme precipitation

1 Introduction

Recent decades have seen large collaborative efforts to pro-
duce downscaled climate datasets to provide information 
regarding current and future climate. The need for this infor-
mation is crucial as many studies have suggested changes in 
the global hydrological cycle in response to global warming, 
leading to global and regional scale changes in: drought risk 
and severity (Diffenbaugh et al. 2015; Apurv et al. 2019; 

Marvel et al. 2019; Alizadeh et al. 2020; AghaKouchak et al. 
2021) on one hand, and more intense and more frequent 
rainfall on the other (Marvel and Bonfils 2013; Westra et al. 
2013; Fischer and Knutti 2015; Prein et al. 2017; Reidmiller 
et al. 2018; Myhre et al. 2019). At the wet end, extreme 
rainfall events have the potential for producing devastating 
effects, such as flooding, damage to public infrastructure 
(e.g., dams, highways etc.), agricultural losses, and loss of 
personal property and lives (Hatfield et al. 2011; Handmer 
et al. 2012; Cutter et al. 2012).

To provide weather and climate information of the past 
and future at fine temporal and spatial scales, the climate 
community uses a procedure called downscaling. Downs-
caling can be divided into two broad categories: dynamical 
and statistical. Dynamical downscaling refers to the use of 
coarse resolution GCMs to drive physically based regional 
climate models at much finer spatial scale (typically 5–10 
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times smaller grid spacing than in coarse GCMs) over an 
area of interest (Giorgi and Mearns 1991). The dynamically 
downscaled RCMs have been found to add value to GCM 
outputs in the form of improved representations of regional 
and local scale features and processes (Feser et al. 2011; 
Prein et al. 2016; Di Luca et al. 2016; Giorgi 2019), how-
ever they are not free from biases originating from errors 
in the intrinsic RCM physics or driving boundary condi-
tions (GCM or reanalysis) or both (Christensen et al. 2008; 
Schoetter et al. 2012; Giorgi 2019). Statistical downscaling 
utilizes statistical relationship between large-scale predic-
tors (e.g., surface pressure, geopotential height, etc.) and 
local variables (e.g., surface air temperature, precipitation, 
etc.) to produce climate information at local scales (Lan-
zante et al. 2018). Statistical downscaling has been found to 
improve representation of local climate variables (Fowler 
et al. 2007; Maraun et al. 2010; Dixon et al. 2016). However, 
statistical downscaling approaches assume that relationships 
between the large-scale and local variables do not change 
in the future– this assumption of statistical stationarity may 
not remain valid in a changing (i.e. nonstationary) climate 
(Lanzante et al. 2018).

In this work we estimate the performance of suites of 
dynamically and statistically downscaled regional climate 
models in simulating precipitation and its indices defined 
by the Expert Team on Climate Change Detection and Indi-
ces (ETCCDI) over the US state of Florida. The first set of 
dynamically downscaled models is a subset of RCMs on 
0.22◦ (25 km) resolution participating in the North Ameri-
can CORDEX (NA-CORDEX) program (https:// doi. org/ 
10. 5065/ D6SJ1 JCH). The RCM simulations from the NA-
CORDEX program (hereafter, NA-CORDEX models) use 
a ‘nested’ modeling approach in which an individual RCM 
is run using boundary conditions from a coarse resolution 
global climate model (GCM) simulation from the Coupled 
Models Intercomparison Project phase 5 (CMIP5) archive. 
The other dynamically downscaled models analyzed in this 
study are multiple configurations of the variable-resolution 
Community Earth System Model (VR-CESM) run with 
the Community Atmosphere Model version 5.4 [CAM5.4]. 
The statistically downscaled model data examined in this 
study are a subset of CMIP5 models statistically down-
scaled using localized constructed analogs (LOCA) tech-
nique (Pierce et al. 2014). These downscaled datasets are 
evaluated against NOAA’s Global Historical Climatology 
Network Daily (GHCN-Daily) dataset. The performance of 
models are also compared against the performance of the 
in situ-based (PRISM, CPC, Livneh) and reanalysis datasets 
(ERA5, MERRA2, NARR).

The detailed objectives of this study are to: (1) evaluate 
the annual cycle of precipitation and seasonality (month of 
occurrence) of extreme precipitation events in each RCM. 
(2) Evaluate the performance of each RCM in simulating the 

spatial and temporal variability of the observed precipita-
tion indices. (3) Make specific comparisons between pairs 
of datasets to understand better their differences. Specifi-
cally, this study (a) compares the performance of statisti-
cally downscaled RCMs (LOCA) against dynamically down-
scaled models (VR-CESM+ NA-CORDEX); (b) compares 
the performance of variable resolution (VR-CESM) models 
against the nested NA-CORDEX models; (c) investigates 
how the downscaled models perform against in situ-based 
and reanalyses datasets; and (d) examines the sensitivity of 
the simulated precipitation in VR-CESM models to varia-
tions in the spatial extent of the fine resolution domain over 
the Atlantic ocean and Africa.

This study is motivated by several considerations as 
explained below. The performance of dynamical RCMs is 
sensitive to horizontal resolution (Prein et al. 2016; Lucas-
Picher et al. 2017; Wu et al. 2017; Seiler et al. 2018), cumu-
lus parameterization schemes (Feser et al. 2011; Pohl et al. 
2014; Qiao et al. 2014; Choi et al. 2015), and spectral nudg-
ing (Whan and Zwiers 2016; Tang et al. 2018; Hu et al. 
2018). Nonetheless, as process-based systems, RCMs are 
not as tightly bound to the statistical stationarity assump-
tion as statistical downscaling methods, an assumption that 
may not hold universally in all circumstances. For example, 
Dixon et al. (2016), using a perfect model setup, showed 
that the empirical statistical downscaling method tends to 
produce large downscaled errors in daily maximum tempera-
tures along US coastal regions and in the warmest summer 
months. Gaitan et al. (2014) showed that the stationarity 
assumption holds for precipitation occurrence processes but 
not for downscaling precipitation amount and precipitation 
indices (such as PRCPTOT, SDII, Rx1day, Rx5day etc.) in 
the southern Ontario and Quebec regions. The sources of 
uncertainty explained above lead to systematic model biases 
in RCMs, and such model biases can potentially grow in 
future climate projections (Christensen et al. 2008). Studies 
have also shown that the performance of both the global 
and regional climate models (statistical and dynamical) in 
simulating the Earth’s climate is sensitive to variables (e.g., 
temperature, precipitation, relative humidity), seasons (e.g., 
summer versus winter), and spatial regions (e.g., coastal 
regions versus mountainous regions) (Wetterhall et al. 2007; 
Di Luca et al. 2012; Schoetter et al. 2012; Martynov et al. 
2013; Diaconescu et al. 2016; Whan and Zwiers 2016; Akin-
sanola et al. 2020; Srivastava et al. 2020). Since the useful-
ness of RCMs lies in their employ in impact, analysis and 
vulnerability studies, it makes sense to evaluate performance 
of regional models against the observed data at regional-to-
local-scales. While there is no guarantee that models that 
accurately simulate historical period will be correct in the 
future (e.g., Reifen and Toumi 2009; Monerie et al. 2017; 
Yan et al. 2019), use of well performing models lends cred-
ibility to future projections, to some extent (Tebaldi and 

https://doi.org/10.5065/D6SJ1JCH
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Knutti 2007; Jun et al. 2008). It is our observation that while 
most of the studies using NA-CORDEX and LOCA models 
focus on future projections, the few studies that have inves-
tigated historical performance of these RCMs have based 
their evaluation on large spatial domains or on a few models 
(Diaconescu et al. 2016; Martynov et al. 2013; Šeparović 
et al. 2013a; Whan and Zwiers 2016). While these studies 
highlight important aspects of biases in RCMs, they are of 
limited utility to stakeholders concerned with smaller sub-
regions (e.g., Kissimmee-Southern Florida water managers). 
Srivastava et al. (2021) show that some of the NA-CORDEX 
models analyzed in this manuscript do not simulate Rx1day 
well over Florida peninsula, though they perform well over 
the Susquehanna watershed in the Northeastern US. Also, 
biases in GCMs and RCMs lead to biases in hydrologic mod-
els (Ashfaq et al. 2010; Li et al. 2014) and uncertainties in 
future climate projections (Ashfaq et al. 2010). Although 
bias-correction does help reduce historical biases, it does 
not reduce intermodel spread in future rainfall projections. 
Zhang and Soden (2019) argue that bias-correction can 
reduce uncertainty in future projections only for those mod-
els that are able to resolve the observed climate. Because 
of these important considerations, we evaluate historical 
precipitation in a wide variety of current regional climate 
models . We chose Florida as a study region because Flor-
ida is barely resolved in global climate models (Misra et al. 
2011), and Florida’s hydroclimate is greatly influenced by 
mesoscale events of the order of 10–1000 km (Maxwell et al. 
2012; Prat and Nelson 2013). Regional climate models that 
perform well in historical simulations will be of particular 
use to stakeholders for making downscaled climate projec-
tions (Jagannathan et al. 2020).

The rest of the paper is organized as follows: Sect. 2 
describes the data used and Sect. 3 outlines our methodology. 
Results are discussed in Sect. 4, and summarized in Sect. 5.

2  Data

The reference station-based daily precipitation dataset used 
in this study is taken from NOAA’s Global Historical Cli-
matology Network Daily (GHCN-Daily) dataset (Menne 
et al. 2012). The data analyzed here span the 1981–2005 
period. The GHCN dataset will be referred as “observa-
tions” throughout the paper. The Oregon State University 
Parameter-Elevation Regressions on Independent Slopes 
Model (PRISM) dataset provides gridded daily precipita-
tion data on 4km resolution (Daly et al. 2008). PRISM uses 
in situ data with a digital elevation model to account for com-
plex regimes associated with orography, rain shadows, tem-
perature inversions, slope aspect, coastal proximity etc. The 
National Oceanic and Atmospheric Administration Climate 
Prediction Center Unified CONUS dataset (CPC) provided 

by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, is 
obtained from the website https:// psl. noaa. gov/ data/ gridd ed/ 
data. unifi ed. daily. conus. html.  CPC is a 0.25◦ × 0.25◦ grid-
ded dataset and uses daily precipitation data from the United 
States rain gauges. The objective interpolation technique used 
in the dataset provides stable performance over regions with 
fewer gauges (Chen et al. 2008). Livneh is a station-based 
1∕16◦ resolution gridded data (Livneh et al. 2013). Livneh 
accounts for orographic effects by using the elevation-aware 
scaling procedure to the 1961–1990 precipitation climatology. 
Together, PRISM, Livneh and CPC datasets will be referred 
as ‘in situ-based” observational datasets.

The North American Regional Reanalysis (NARR) is a 
dynamically consistent, reanalysis dataset with 32 km grid 
spacing (Mesinger et al. 2006). NARR assimilates high 
quality and detailed hourly precipitation datasets to adjust 
the accumulated convective and large scale precipitation 
and other related variables. The Modern-Era Retrospective 
Analysis for Research and Applications, version 2 (MERRA-
2) is a reanalysis dataset on 0.625◦ × 0.5

◦ resolution that 
includes additional observing systems than its previous 
version (MERRA). MERRA-2 uses observation-corrected 
model precipitation for forcing land surface to improve 
land surface hydrology. However, the corrected precipi-
tation estimates to force land surface can only indirectly 
modify atmospheric water variables. The European Centre 
for Medium-Range Weather Forecasts Reanalysis version 
5 (ERA-5) is a fifth generation reanalysis product at 31km 
horizontal grid spacing (Hersbach et al. 2020). The major 
improvements in ERA-5 are higher horizontal and verti-
cal resolutions, improved bias correction, and an upgraded 
radiative transfer model. Unlike NARR, ERA-5 does not 
directly assimilate precipitation.

The first set of dynamically downscaled models ana-
lyzed here is a subset of RCMs on 0.22◦ (25 km) resolu-
tion participating in the North American CORDEX (NA-
CORDEX) program (https:// doi. org/ 10. 5065/ D6SJ1 JCH). 
The NA-CORDEX RCM simulations analyzed here use the 
‘nested’ modeling approach in which an individual RCM 
is run using boundary conditions from a coarse resolution 
global climate model (GCM) simulation from the Coupled 
Models Intercomparison Project phase 5 (CMIP5) archive. 
The list of NA-CORDEX models analyzed in this study is 
given in Table 1. The characteristics of NA-CORDEX mod-
els can be accessed from https:// na- cordex. org/ rcm- chara 
cteri stics. The other set of dynamically downscaled models 
analyzed in this study is the variable resolution Commu-
nity Earth System Model (VR-CESM) run over the period 
1985–2014 with three different variable resolutions using 
Community Atmosphere Model version 5.4 [CAM5.4] 
(Neale et al. 2012; Hurrell et al. 2013; Zarzycki et al. 2014). 
In particular, we use the simulation data from Stansfield 
et al. (2020). Each VR-CESM simulation has 28km grid 

https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
https://doi.org/10.5065/D6SJ1JCH
https://na-cordex.org/rcm-characteristics
https://na-cordex.org/rcm-characteristics
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spacing over the domain of interest and 110km spac-
ing over the rest of the globe. Each version of VR-CESM 
simulation is distinguished by its fine resolution domain 
of interest: WAT (Western North Atlantic + Eastern US 
only), REF (entire North Atlantic + Eastern US), and EXT 
(North Atlantic + Africa + Eastern US). The extents of 
these domains are shown in the supplementary material Fig. 
S1. The list of VR-CESM models is given in Table 2. The 
third set of downscaled model data are a subset of CMIP5 
models statistically downscaled using the localized con-
structed analogs (LOCA) technique (Pierce et al. 2014). The 
downscaling is applied to the bias-corrected data using the 
quantile mapping approach from Wood et al. (2004). The 
LOCA models analyzed in this study are listed in Table 3.

3  Methodology

3.1  Estimation of annual cycle of daily precipitation 
and seasonality of extreme precipitation events

Alexander et al. (2019) discuss values and potential issues 
associated with indices-based studies, and they concur that 
indices do provide valuable information in terms of aver-
ages, variance, trend etc. But, the indices represent con-
densed information from continuous distribution in the 
form of a few numbers [e.g., annual maximum precipita-
tion (Rx1day) or annual total precipitation during wet days 
(PRCPTOT)], and therefore, they must be investigated 
along with other indicators. The annually computed indi-
ces give no information on timing of the annual extremes. 
Therefore, indices such as Rx1day estimated from different 
datasets may be similar, but their timing of occurrence 
and associated mechanisms may be different (Bador et al. 
2020). This consideration is important as Florida receives 
more rainfall during summer (June–September) than in 
winter—further, summer rainfall is mostly convective 
and winter rainfall is mostly frontal in cause. Inadequate 
representation of the annual cycle and timing of extreme 
precipitation in a model suggest fundamental problems 
associated with simulated mechanisms driving the pre-
cipitation. Therefore, in this work we will use the annual 
cycle of precipitation and the seasonality of extreme pre-
cipitation as diagnostic tools to complement models’ per-
formance based upon calculated indices.

The annual cycle of precipitation is estimated from 
the monthly precipitation values spatially averaged over 
stations in Florida. The seasonality (timing) of extreme 
precipitation events is estimated from the month of occur-
rence of extreme precipitation events (precipitation greater 
than 95th percentile of wet day precipitation (daily pre-
cipitation >= 1 mm/day)).

3.2  Calculation of indices

The ETCCDI precipitation indices analyzed in the study 
are listed in Table 4. The selected indices cover the full 
precipitation spectrum. For example, PRCPTOT and SDII 
target the mean areas of the precipitation distribution. As 
noted in Table 4, PRCPTOT measures the total precipita-
tion during wet days,  whereas SDII is the mean precipita-
tion  during wet days (when, precipitation >= 1 mm/day). 
CWD is defined from wet days (daily precipitation >= 1 
mm/day) and CDD from dry days (daily precipitation < 1 
mm/day). Rx5day and R95ptot pertain to the upper tail of 
the precipitation distribution. We also analyze 10-year return 
levels of Rx5day, which characterizes more extreme events 
than other, more moderate ETCCDI indices analyzed here 
(Sillmann et al. 2013). The indices are calculated for each 
calendar year over the period 1981–2005 in the datasets 
(1985–2005 in VR-CESMs). We choose the base period of 
1981–2005 (1985–2005 in VR-CESMs) to estimate the 95th 
percentile of wet day precipitation because some datasets 
such as PRISM, ERA5, NARR, MERRA2, and VR-CESM 
are only available after the year 1979. The indices in each 
dataset are first calculated on the native grid, and then inter-
polated to the GHCN station locations using the nearest-
neighbour interpolation scheme.

3.3  Estimation of the 10‑year return level of Rx5day

The 10-year return level of Rx5day is estimated by fitting 
a generalized extreme value (GEV) distribution to annual 
block maxima (here, Rx5day) (Coles et al. 2001). The GEV 
distribution is defined as

where � , � and � are the location, scale and shape param-
eters. Prior to fitting the GEV distribution, a trend analy-
sis is performed at each location using the Mann-Kendall 
trend test (Mann 1945). If no significant trend at the 5% 
significance level is found, then a stationary form of the 
GEV distribution is fitted to the annual Rx5day data, other-
wise a non-stationary form of the GEV distribution is fitted. 
The non-stationarity is introduced by adding time as a linear 
covariate in the location parameter of the GEV distribution 
in the following way:

where �(t) is the time dependent location parameter. Hence, 
�1 = 0 for the stationary model of the GEV distribution. 
The 10% significance of difference in 10-year return values 

(1)G(z) = exp

{

−

[

1 + �

(

z − �

�

)]−1∕�
}

,

(2)�(t) = �0 + �1t,
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between a gridded dataset and GHCN data is estimated using 
a z-score as defined in Srivastava et al. (2019).

3.4  Metric evaluation

We will use the metric evaluation approach to examine pre-
cipitation indices in datasets following Gleckler et al. (2008), 
Sillmann et al. (2013) and Srivastava et al. (2020). The cli-
matological biases in the long term mean of an index i in a 
dataset d is evaluated as the centered root-mean-square of 
the error (RMSE) in the mean climatology ( Ec

d,i
):

where Xo,i,n is the climatological mean of an index i at a 
station n in the GHCN data and Xd,i,n is the climatologi-
cal mean of the corresponding index i at the station n in a 
dataset d. Xd,i and Xo,i are the spatially averaged (over N 
stations) values of Xd,i,n and Xo,i,n , respectively. The term 
“centered” indicates that the spatial averages Xd,i and Xo,i 
are removed from the respective fields (as shown in Eq. 3). 
The Ec

d,i
 value for an index in a dataset perfectly simulating 

the observed climatology will be zero. A dataset’s relative 
performance in simulating the mean climate is measured by 
the normalized RMSE (NRMSE) values for centered biases 
in the mean climate:

where Êc
i is the median RMSE in mean climatologies ( Ec

d,i
 ) 

calculated over all RCMs. A dataset with the negative 
NRMSE ( NEc

d,i
 ) performs better than typical performance 

of RCMs and vice-versa. A dataset’s overall performance in 
simulating the mean indices is scored by the median of its 
NRMSEs ( NEc

d,i
 s) across all indices– this average score is 

referred as the “model climate index (MCI)”.
Similarly, biases in the interannual variability of an index 

i in a dataset d is evaluated as the centered RMSE in the 
interquartile range (IQR) of the index ( Ev

d,i
):

where Yo,i,n is the IQR of an index i at a station n in the 
GHCN data and Yd,i,n is the IQR of the corresponding index 
i at the station n in a dataset d. Yd,i and Y

o,i are the spatially 
averaged (over N stations) values of Yd,i,n and Yo,i,n , respec-
tively. Ev

d,i
 will be zero for a dataset perfectly simulating the 

observed IQR of an index i. The smaller the Ev
d,i

 the better 
a dataset’s performance. A dataset’s relative performance 

(3)

Ec
d,i

=

{

1

N

N
∑

n=1

[(

Xd,i,n − Xd,i

)

−

(

Xo,i,n − Xo,i

)]2
}1∕2

,

(4)NEc
d,i

=
Ec
d,i

− Êc
i

Êc
i

,

(5)Ev
d,i

=

{

1

N

N
∑

n=1

[(

Yd,i,n − Yd,i

)

−

(

Yo,i,n − Yo,i

)]2
}1∕2

,

in simulating the observed interannual IQR of an index is 
measured by the normalized RMSE (NRMSE) values for 
centered biases in the IQR:

where Êv
i is the median RMSE in IQR ( Ev

d,i
 ) calculated over 

all RCMs. A dataset with the negative NEv
d,i

 performs better 
than the typical performance of models and vice-versa. A 
dataset’s overall performance in simulating the IQR of the 
observed indices is scored by the median of its NRMSEs 
( NEv

d,i
 ) over all indices—this average score is referred as the 

“model variability index (MVI)”.
We use centered RMS errors (RMSEs) to quantify biases 

in the mean and interannual variability of indices because 
similarity between the observed and simulated patterns can 
be quantified in terms of the three related statistics simulta-
neously: centered RMSE, correlation and standard deviation. 
The three statistics are related by the equation

where R is the correlation coefficient between a model and 
the observed data, E is the centered RMS difference between 
a model and the observed fields, and �2

r
 and �2

f
 are the vari-

ances of the model and observed fields, respectively. The 
Eq. 7 is the basis of the Taylor diagram which graphically 
summarizes the similarity between two patterns in terms of 
their correlation coefficient, their centered root-mean-
squared difference and the amplitude of their variations (rep-
resented by their standard deviations) (Taylor 2001). It must 
be noted that since spatially averaged biases are removed 
from the indices before computing centered RMS errors in 
Eqs. 3 and 5, the centered RMS errors and the corresponding 
Taylor diagram do not inform about overall biases, but only 
represent centered pattern errors.

4  Results

4.1  Annual cycle of daily precipitation

Figure 1 shows the annual cycle of precipitation over 
Florida in station observations and other datasets. The 
annual cycle is computed from monthly means of station-
based daily precipitation, averaged over Florida. The 
annual cycle of the observed precipitation (black curve) in 
Florida characterizes wet summer season (June–Septem-
ber) followed by 8 drier months (Obeysekera et al. 2017). 
The summer precipitation alone accounts for 50% of the 
total annual rainfall and is primarily due to convective 
rainfall, tropical depressions, and hurricanes. Whereas, 

(6)NEv
d,i

=
Ev
d,i

− Êv
i

Êv
i

,

(7)E
2 = �2

f
+ �2

r
− 2�

f
�
r
R,
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precipitation in the other months is mainly due to fronts 
coming from the northwest (Ali et al. 2000; Baigorria 
et al. 2007). As is clear from Fig. 1a, all in situ-based 
observational datasets (PRISM, Livneh and CPC) capture 

both the phase and amplitude of the observed annual cycle 
very well. This is also clear from the corresponding Taylor 
diagram (Fig. 1e), where all in situ-based observational 
datasets exhibit correlation skill > 0.99 and have standard 
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deviation almost equal to that in the GHCN dataset. In 
contrast, all reanalyses datasets do capture the phase of 
the annual cycle but underestimate the magnitude during 
summer. The larger spread in the simulated annual cycle 
among reanalyses in comparison to station-based datasets 
is also found in previous studies (e.g., Bador et al. (2020)). 
However, in Bador et al. (2020), reanalyses showed higher 
magnitude of precipitation than in situ-based observational 
datasets, when evaluated over northern extratropical band 
( 20◦ N-50◦ N). This highlights the point that datasets’ per-
formance are sensitive to size, location, and heterogeneity 
of the domain of interest.

NA-CORDEX models (Fig. 1b, e) show high degree of 
variability in capturing both the phase and amplitude of 
the observed annual cycle. Models CanESM2.CRCM5-
OUR (B) and CanESM2.CRCM5-UQAM (C) completely 
miss the phase of the observed annual cycle (negative cor-
relation), whereas GFDL-ESM2M.WRF (H) and GFDL-
ESM2M.CRCM5-OUR (F) show little correlation. Among 
NA-CORDEX models, MPI-ESM-LR.RegCM4 (M), 
GEMatm-Can.CRCM5-UQAM (D) and MPI-ESM-LR.
WRF (N) best capture the annual cycle (correlation skill 
around 0.9 and normalized standard deviation close to 1). 
Among all models, the LOCA models (Fig. 1c, e) best sim-
ulate the observed annual cycle, which is not surprising as 
LOCA datasets are bias-corrected datasets. All VR-CESM 
models (Fig. 1d, e) capture the phase of the annual cycle 
very well (correlation around 0.9) and but show smaller 
amplitude than the GHCN data.

In summary, the simulation of the annual cycle in these 
datasets suggest that the in situ-based data best capture 
the observed annual cycle, likely because they are based 
on the same station-based dataset. The reanalysis data-
sets perform no better than VR-CESM, LOCA and some 
NA-CORDEX models. NA-CORDEX models show large 
variability in the simulated annual cycle of precipitation. 
Thus, the climatological performance of VR-CESM is on 
par with reanalyses.

4.2  10‑Year return level of Rx5day

Figure 2 shows the observed pattern of 10-year return levels 
of Rx5day and corresponding biases in the datasets. The 
10-year return level estimates in the GHCN dataset exhibit 
large spatial variability across the state, where the biggest 
magnitudes (> 275 mm) are mostly concentrated in the 
southeast coastal regions and the smallest (< 225 mm) over 
inland stations. The in situ-based observational datasets 
slightly underestimate ( < 10% ) the 10-year return levels, 
but the underestimation is not significant at the 10% signifi-
cance level at most of the stations. In contrast, the reanalyses 
datasets show large variability in the biases, with MERRA-2 
performing the best. ERA5 and NARR both significantly 
underestimate (25–75%) the return levels at most of the sta-
tions. As shown for the annual cycle, NA-CORDEX models 
show large variability in these return level biases. For exam-
ple, MPI-ESM-LR.CRCM5-OUR, MPI-ESM-LR.CRCM5-
UQAM, and GEMatm-MPI.CRCM-UQAM significantly 
overestimate ( > 10%) the 10-year return levels at most of the 
stations. On the other hand, CanESM2.CanRCM4, GFDL-
ESM2M.WRF and MPI-ESM-LR.WRF mostly underesti-
mate the return levels. All LOCA models generally simulate 
the 10-year return levels very well (within ± 10% ). All VR-
CESM models generally underestimate the return levels, but 
the underestimation is not significant at most of the stations.

In summary, among observation-based datasets, the 
in situ-based observational datasets perform better than the 
reanalyses datasets in capturing the observed 10-year return 
levels. Both LOCA and VR-CESM models mostly underes-
timate the return levels. NA-CORDEX models show large 
variability in the simulation of the 10-year return levels, 
with some models significantly overestimating the return 
levels and a few significantly underestimating at a majority 
of stations.

4.3  Seasonality of extreme precipitation events

Figure 3 shows the seasonality of extreme precipitation 
events. The seasonality is defined as the number of extreme 
events occurring in each calendar month as a percentage of 
the total number of extreme events. An extreme precipitation 
event is defined as a day when the daily precipitation amount 
is greater than the 95th percentile of the wet day precipita-
tion ( >= 1 mm/day). The figure shows the occurrence of 
events over all stations in Florida. The timing of extreme 
precipitation roughly follows the annual cycle pattern shown 
in Fig. 1. As shown by the black curve, around 54% of the 
observed extreme precipitation events occur between June 
and September. The seasonality of the extreme events in 
in situ-based observational datasets (Fig. 3a) match very 
well with that in the GHCN data- this is also clear from 
the corresponding Taylor diagram (Fig. 3e), where these 

Fig. 1  a–d Annual cycle of precipitation (mm/day) in various mod-
els. e The corresponding Taylor diagram shows how closely the pat-
tern of the annual cycle in the observation resembles that in a dataset. 
The reference point (observation) is marked as a solid grey square 
with centered RMS error of zero. Letters indicate the position of each 
dataset. The dashed black lines on the outermost semicircle indicate 
correlations between the observation and a dataset. The blue dashed 
curves indicate the normalized standard deviations defined as stand-
ard deviation of the annual cycle in datasets, normalized by the stand-
ard deviation in the observation. The standard deviation is measured 
as the radial distance from the origin. The grey dashed curves show 
the centered normalized root mean squared error (NRMSE) defined 
as root-mean-square of the centered difference between a dataset and 
observation, normalized by the standard deviation in the observation. 
The NRMSE is measured as a distance from the reference point (solid 
grey square)

◂



 A. K. Srivastava et al.

1 3

datasets show very high correlation skill ( > 0.95 ) and the 
normalized standard deviations close to 1. The reanalyses 
datasets (Fig. 3a) generally overestimate the frequency of the 
events during winter and spring seasons, and underestimate 
the frequency during summer months. Bador et al. (2020) 
show that reanalyses datasets generally overestimate the fre-
quency of extreme 24-h precipitation (Rx1day) during win-
ter and spring and underestimate the frequency of extremes 
during summer months with respect to in situ-based datasets 
in the Northern hemisphere extratropics ( 20 − 50◦ N) . The 
reanalyses perform similar to some of the NA-CORDEX 
models and poorer than the LOCA models (Fig. 3e). Inter-
estingly, ERA5 poorly captures both the phase (correlation 
around 0.4) and magnitude of variations (normalized stand-
ard deviation around 0.6) of the seasonality, performing 
worse than most of the datasets (Fig. 3e).

The NA-CORDEX datasets (Fig. 3b) exhibit large vari-
ability in the simulation of the seasonality of extreme events. 
Almost all of them underestimate the frequency of extremes 
between June and September, and most of the them overes-
timate the frequency during winter and spring. In particular, 
all the three RCMs driven by CanESM2 perform the poorest 
in simulating the timing largely because they are unable to 
capture the phase of the observed seasonality (correlation 
skill is negative as shown in Fig. 3e). Whereas, three out 
of the four RCMs driven by MPI-ESM-LR [CRCM5-OUR 
(K), CRCM5-UQAM (L) and WRF (N)] perform the best 
among NA-CORDEX models in terms of capturing both 
the phase and amplitude of variations of the seasonality. 
LOCA models perform the best in comparison to other 
RCMs and reanalyses datasets (Fig. 3c, e). All VR-CESM 
models overestimate the frequency during winter and spring 
and underestimate the frequency during summer- they show 

low-to-moderate correlations and amplitude of variations 
nearly half of the GHCN dataset (Fig. 3d, e).

In summary, the in situ-based datasets perform the best 
in capturing the observed seasonality. All reanalyses data-
sets and RCMs, except LOCA, generally underestimate the 
seasonality between June and September and overestimate 
the seasonality in other months.

4.4  Biases in the climatological means 
of the indices

Figures 4, 5, 6, 7, 8 and S2 show biases [(dataset-GHCN) 
× 100/GHCN] in climatological means of PRCPTOT, 
SDII, CDD, Rx5day, R95ptot, and CWD, respectively. The 
Taylor diagrams for centered biases in these mean indices 
are shown in Fig. S9. It is apparent from these figures that 
in situ-based datasets perform better than the reanalyses 
datasets and RCMs in matching the mean of the indices 
except SDII (Figs. 5, S9b) and CWD (Figs. S2, S9d). While 
in situ-based datasets represent the mean of the other indi-
ces mostly within ±10% of the observed mean, they show 
large errors in representing SDII (underestimating it by 
10–40%, Fig. 5 ) and CWD (overestimating it by 20–80%, 
Fig. S2). For SDII, CPC shows low correlation skill ( < 0.4 ) 
and PRISM exhibits the largest spatial variability (normal-
ized standard deviation) in comparison to GHCN data (Fig. 
S9b). For CWD, the performance of in situ-based datasets 
are similar to that of LOCA models (Fig. S9d)

All three reanalyses underestimate PRCPTOT (by 5–40%, 
Fig. 4), SDII (by 20–70%, Fig. 5), CDD (by 5–30%, Fig. 6); 
and severely overestimate CWD ( > 60% , Fig. S2). MERRA2 
overestimates mean CWD by more than 200% everywhere 
(Fig. S2). This indicates that the reanalyses show precipitation 

Table 1  List of NA-CORDEX models analyzed in the study

All models are on 0.22◦ resolution

Driver GCM RCM Institution Identifier References

CanESM2 CanRCM4 CCCma A Scinocca et al. (2015)
CRCM5 Ouranos B Zadra et al. (2008), Martynov et al. (2013) and Šeparović et al. (2013b)
CRCM5 UQAM C Zadra et al. (2008), Martynov et al. (2013) and Šeparović et al. (2013b)

GEMatm-Can CRCM5 UQAM D Zadra et al. (2008), Martynov et al. (2013) and Šeparović et al. (2013b)
GEMatm-MPI CRCM5 UQAM E Zadra et al. (2008), Martynov et al. (2013) and Šeparović et al. (2013b)
GFDL-ESM-2M CRCM5 Ouranos F Zadra et al. (2008), Martynov et al. (2013) and Šeparović et al. (2013b)

RegCM4 Iowa State NCAR G Giorgi et al. (2012)
WRF NCAR U Arizona H Skamarock et al. (2005)

HadGEM2-ES RegCM4 Iowa State NCAR I Giorgi et al. (2012)
WRF NCAR U Arizona J Skamarock et al. (2005)

MPI-ESM-LR CRCM5 Ouranos K Zadra et al. (2008), Martynov et al. (2013) and Šeparović et al. (2013b)
CRCM5 UQAM L Zadra et al. (2008), Martynov et al. (2013) and Šeparović et al. (2013b)
RegCM4 Iowa State NCAR M Giorgi et al. (2012)
WRF NCAR U Arizona N Skamarock et al. (2005)
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Fig. 2  Percentage biases [(dataset-GHCN)×100/GHCN] in the 
10-year return level  of Rx5day. The upper left panel shows the 
10-year return level  (unit:  mm) in the GHCN dataset and uses the 
color scale along the bottom edge of the figure. The other panels 
show percentage biases and use the color scale along the right edge 

of the figure. Differences significant at the 90% significance level are 
shown as solid squares and those not significant at the 90% are shown 
as blank circles. The significance is computed using the z-statistic as 
described in Srivastava et al. (2019)
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more frequently but with lesser magnitude than the observa-
tions. This problem of too much light precipitation in the rea-
nalyses datasets have also been found in other studies (e.g., 
for MERRA2 and ERA5 in Barrett et al. (2020)). ERA5 and 
NARR severely underestimate Rx5day (Fig. 7) and R95ptot 
(Fig. 8). Both NARR and MERRA2 show opposite pattern of 
spatial variability in Rx5day and R95ptot with respect to that in 
observed data (negative correlation as shown in Figs. S9e and 
S9f). It is interesting to note that although NARR assimilates 
hourly precipitation, it exhibits biases in all precipitation indi-
ces as large as in the other reanalyses datasets and some RCMs.

All of the NA-CORDEX models overestimate PRCP-
TOT (by 30–105%, Fig. 4), R95ptot (mostly by 30–80%, 
Fig. 8), CWD ( > 60% , Fig. S2); and underestimate SDII (by 
15–40%, Fig. 5), CDD (by 30–75%, Fig. 6). The positive 
PRCPTOT mean biases in NA-CORDEX models are likely 
due to a greater number of simulated rain days. The occur-
rence of too light and too frequent precipitation is a known 
problem in both the global and regional climate models (Dai 
2006; Stephens et al. 2010; Willkofer et al. 2018; Akinsanola 
et al. 2020, 2021), and arises due to convective parameteri-
zation schemes that trigger convection too easily (Terai et al. 
2016)—this problem persists irrespective of resolution (Her-
rington and Reed 2020). The NA-CORDEX models show 
a large variability in simulating the Rx5day (Fig. 7), where 
models such MPI-ESM-LR.CRCM5-OUR, MPI-ESM-
LR.CRCM5-UQAM, GEMatm-Can.CRCM5-UQAM and 
GEMatm-MPI.CRCM5-UQAM generally overestimate (by 
10–40%), and CanESM2.CanRCM4 mostly underestimates 
(by 10–40%) Rx5day. The pattern of the largest dry bias in 
the annual Rx5day, together with the underestimated mean 
precipitation and frequency of extremes during summer in 
CanESM2.CanRCM4, is consistent with the dry summer 
bias associated with the underestimated summer convective 
rainfall found in CanRCM4 model driven by ERA-Interim 
in Whan and Zwiers (2016). It is worth mentioning here that 
precipitation in models represents averages over grid boxes, 
whereas, precipitation in GHCN data is a point measure-
ment. Precipitation extremes derived from station data are 
expected to be higher than those derived from gridded model 
output (Chen and Knutson 2008). Therefore, models that 
exhibit larger precipitation extremes than station data should 
be considered with caution (Sillmann et al. 2013).

The LOCA models show mostly similar performance in 
simulating most of the precipitation indices. For instance, 
all LOCA models simulate mean PRCPTOT mostly within 
± 10% (Fig.  4). These models underestimate mean SDII 
(by 20–40%, Fig. 5), CDD (5–30%, Fig. 6) and overesti-
mate CWD ( > 60% , Fig. S2) everywhere. A close inspec-
tion indicates that LOCA models generally underestimate all 
intensity based indices (PRCPTOT, SDII, Rx5day, R95ptot) 
over the Florida peninsula south of 29◦ N by more than 10%. 
The smaller percentage biases in total precipitation amounts 
(PRCPTOT, Rx5day etc.) and larger percentage biases in 
SDII suggest that the “frequency dependent bias correction” 
applied to LOCA models reduces biases in total precipitation 
amount but does not effectively account for the too frequent 
precipitation problem. Engström and Keellings (2018) found 
that the LOCA models generally had more problems in cap-
turing the observed distribution of consecutive dry days over 
Florida than over the other areas in the southeastern US, and 
that the models had the greatest difficulty in simulating dry 
spells over south Florida during the cold season. None of the 4 
LOCA models analyzed here were among the top performers 
in the study of Engström and Keellings (2018). They specu-
lated that during winter, frontal systems rarely reach south 
Florida, and temperatures are not conducive for convection, 
resulting into longer drier periods. The LOCA models per-
form better than most of the RCMs and reanalyses datasets 
mostly because they are bias-corrected downscaled models.

Like other datasets, VR-CESM models also show similar 
patterns of biases for most of the indices. Notably, mean 
biases in these models are pretty severe. For example, VR-
CESM underestimates PRCPTOT by 20–40% (Fig. 4), SDII 
by 50–70% (Fig. 5), Rx5day by 10–30% (Fig. 7) and over-
estimates CWD (Fig. S2) by more than 200%. The underes-
timation of mean and extreme precipitation along with the 
overestimation of wet days suggests that these models tend 
to underestimate the precipitation systematically across a 
range of precipitation intensities. This problem of lighter 
precipitation in VR-CESM models may be related to con-
vective parameterizations, as in the NA-CORDEX models.

The pattern of biases in CDD, CWD and SDII in all rea-
nalyses and model datasets analyzed here are similar to those 
in coarse resolution CMIP5 and CMIP6 multimodel medians 
(Srivastava et al. 2020). This suggests that a too-light-and-
too-frequent precipitation problem, which may be related 
to the erroneous convective parameterization schemes, 
still persists in high resolution climate models, and simply 
increasing model horizontal resolution does not necessarily 
lead to improvement in the representation of extremes (e.g., 
Akinsanola et al. 2020). The Taylor diagram for centered 
biases in Fig. S9 shows that both the models and reanalyses 
do not have consistent skills in simulating the spatial pat-
tern of the indices (correlation skill, standard deviation and 
RMSD vary over a large range from one index to the other). 

Table 2  List of VR-CESM models

Models domain Identifier Reference

VR28.WAT Eastern US + West-
ern North Atlantic

S Stansfield et al. 
(2020)

VR28.REF Eastern US + North 
Atlantic

T

VR28.EXT Eastern US + North 
Atlantic + Africa

U
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Fig. 3  Similar to Fig. 1, but showing the seasonality of extreme pre-
cipitation events. Seasonality is defined as the number of extreme 
precipitation events occurring in each calendar month as a percentage 
of the total number of extreme events. An extreme precipitation event 

is defined as a day when the daily precipitation amount is greater than 
the 95th percentile of the wet day  precipitation  (P >= 1 mm/day) 
timeseries over the period 1981–2005. The details of the Taylor dia-
gram are the same as in Fig. 1
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Fig. 4  Bias in the 1981–2005 time mean of annual total precipitation 
from days ≥ 1 mm (PRCPTOT). The upper left panel shows mean 
PRCPTOT in the GHCN dataset and uses the color scale along the 
bottom edge of the figure. The other panels show percent bias 

([

data-

set - GHCN
]

 × 100/GHCN
)

 in the mean PRCPTOT and use the color 
scale along the right edge of the figure. The unit of PRCPTOT in the 
upper left panel is mm/year
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Also noticeable is that the performance of reanalyses are 
indistinguishable from those of the models.

4.5  Biases in the interannual variability 
of the indices

Figures S3–S8 show biases in interannual variability defined 
as the ratio of interquartile range (IQR) of indices in data-
sets over those in the GHCN dataset. The patterns of biases 
in IQRs of SDII, CWD and CDD are similar to those in 
the corresponding mean indices. For example, all datasets 
underestimate both the mean and variability in SDII (Figs. 5, 
S4) and CDD (Figs. 6, S5); and overestimate the mean and 
variability in CWD (Figs. S2, S6). The biases in interannual 
variability in some datasets are pretty severe. For instance, 
ERA5 and NARR underestimate IQR of SDII by more than 
50% of the observed IQR (Fig. S4), and all of the reanalyses 
datasets overestimate CWD by more than 100% at most of 
the locations (Fig. S6). Similarly most of the NA-CORDEX 
models underestimate IQRs of SDII (Fig. S4), CDD (Fig. 
S5) by more than 50% and overestimate CWD (Fig. S6) by 
at least 75%. VR-CESM models underestimate the interan-
nual variability in SDII (Fig. S4) by more than 50% and 
overestimate the variability in CWD (Fig. S6) by more than 
100%. The patterns of IQR biases in PRCPTOT (Fig. S3), 
Rx5day (Fig. S7) and R95ptot (Fig. S8) in the datasets are 
marked by over and under-estimation. However, more often 
than not, the patterns of the biases in the interannual varia-
bility in PRCPTOT, Rx5day and R95ptot are similar to those 
in the corresponding mean indices. The Taylor diagrams 
for biases in IQRs (shown in Fig. S10a–f) indicate that all 
datasets have trouble capturing the spatial pattern of biases 
in IQRs. For example, all in situ-based datasets show much 
lower correlation skill ( < 0.4 ) for IQR biases in CWD (Fig. 
S10d) than for mean biases in CWD ( ≥ 0.6 , Fig. S9d). Also, 
a larger number of models and reanalyses datasets do not 
capture the spatial pattern of indices’ IQR (correlation is 
negative, Fig. S10a–f).

4.6  Metric evaluation of the indices

Figure 9a shows datasets’ NRMSE values for centered 
biases in the mean climatology (expressed as NEc in 
Eq. 4). For a given index, a dataset with the negative 

NEc performs better than the majority of the RCMs and 
vice-versa. For a dataset, the metric MCI is the median 
of NEc s over all indices. The datasets are ranked by their 
MCI values.

As shown before, the in situ-based datasets generally 
perform the best in simulating the mean indices– an excep-
tion to this is Livneh that performs poorer than typical 
model performance in simulating the mean SDII. Reanaly-
ses datasets show large variation in the simulation of the 
mean indices, as also found in previous studies (Donat et al. 
2014; Sun et al. 2018; Bador et al. 2020; Alexander et al. 
2020). To illustrate, ERA5 outperforms the other datasets, 
except in situ-based datasets, in simulating the mean indices; 
MERRA2 performs close to median model performance, 
and NARR performs poorer than the typical model perfor-
mance. The poor performance of NARR and MERRA2 are 
due to the fact that both of these datasets show low corre-
lations skills (sometimes even negative) for moderate and 
extreme precipitation indices (PRCPTOT, SDII, Rx5day, 
R95ptot), and have normalized standard deviations consid-
erably different from 1 (Fig. S9). As a result, the uncertainty 
in the performance of reanalyses datasets is comparable to 
that of models.

The LOCA models are among the top model perform-
ers and have very similar overall performance (similar 
MCI values). However, despite being bias-corrected, not 
all of them always perform better than the other models. 
All the three VR-CESM models have similar skills for most 
of the mean indices, and perform better than the median 
model performances. In fact, VR28.REF performs the best 
among all models. The NA-CORDEX models show broad 
uncertainty in model performance. The models MPI-ESM-
LR.CRCM5-UQAM, MPI-ESM-LR.CRCM5-OUR, and 
GEMatm-Can.CRCM5-UQAM perform the best among 
NA-CORDEX models. Whereas, CanESM2.CRCM5-OUR, 
GFDL-ESM2M.CRCM5-OUR, MPI-ESM-LR.RegCM4 and 
GFDL-ESM2M.WRF perform the worst among all datasets. 
It is also apparent from the figure that generally WRF and 
RegCM4 models perform poorer than the median model 
performance– these models have difficulty in capturing the 
phase (low correlation skill) and magnitude of variation 
(normalized standard deviation different from 1) of most of 
the mean indices (Fig. S9).

Figure 9b shows datasets’ NRMSE values for centered 
biases in IQR (expressed as NEv in Eq. 6). The in situ-based 
gridded datasets perform the best in matching the IQRs of 
most of the indices. The reanalyses display considerable 
uncertainty in the performance. ERA5 performs better than 
the other reanalyses and models, but MERRA2 performs 
poorer than typical model performance. As seen in the mean 
indices, both LOCA and VR-CESM generally perform better 
than median performance. The similar relative performance 
of VR-CESM models suggests that the spatial extent of fine 

Table 3  List LOCA models

Models Identifier Reference

CanESM2 O Pierce et al. (2014)
GFDL-ESM2M P
HadGEM2-ES Q
MPI-ESM-LR R
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Fig. 5  As Fig. 4 but for bias in SDII. The unit of SDII in the upper left panel is mm/day
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Fig. 6  As Fig. 4 but for bias in CDD. The unit of CDD in the upper left panel is days



 A. K. Srivastava et al.

1 3

Fig. 7  As Fig. 4 but for bias in Rx5day. The unit of Rx5day in the upper left panel is mm/5day
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Fig. 8  As Fig. 4 but for bias in R95ptot. The unit of R95ptot in the upper left panel is mm
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resolution in VR-CESM models does not have significant 
influence on model’s performance in matching the mean and 
interannual variability of the observed indices over Florida. 
However, a close examination of Figs. S3–S8 indicates that 
VR28.WAT underestimates the interannual variability of the 
indices by larger proportion than the other two VR-CESM 

simulations. This underestimated variability in VR28.WAT 
is also found in Zarzycki et al. (2021), and is attributed to 
WAT’s lower simulated interannual variability of tropical 
cyclone counts and intensities. The NA-CORDEX models 
show a contrary behaviour wherein models that perform 
relatively better in simulating the mean indices perform 

Fig. 9  Portrait diagrams of 
centered normalized root-mean-
squared-errors (NRMSEs). 
Panel a NRMSE for climatolog-
ical mean of indices computed 
from Eqs. 3 and 4. For a dataset 
the MCI shown in the top row is 
the median of NRMSEs over all 
indices for that dataset. Panel b 
NRMSE for interquartile range 
(IQR) of indices computed 
from Eqs. 5 and 6. For a dataset 
the MVI shown in the top row 
of each panel is the median 
of NRMSEs over all indices 
for that dataset. NRMSEs are 
unitless. Models in panels a, b 
are ordered seperately from one 
another based on MCI/ MVI 
respectively
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relatively poorer in simulating the variability of the indices. 
For example, MPI-ESM-LR.CRCM5.OUR and GEMatm-
Can.CRCM5.UQAM are among the top performers in 
simulating the mean but perform poorer than the median 
performance in simulating the interannual variability of the 
indices. MPI-ESM-LR.CRCM5.UQAM, on the other hand, 
performed consistently better than most of the RCMs in 
simulating the mean and variability of the indices. Moreo-
ver, MPI-ESM-LR.CRCM5.UQAM performed very well 
in simulating the annual cycle and seasonality of precipita-
tion extremes, which gives confidence that the model per-
forms well for right reasons. As for the mean indices, the 
RegCM4 models perform worse than typical model perfor-
mance and are among the lowest model performers– this is 
largely due to poor correlation skill and misrepresentation 
of the observed standard deviation shown by these models 
(Figs. S9 and S10) for most of the indices. The WRF mod-
els, except GFDL-ESM2M.WRF, remain among the poorest 
performers.

4.7  Overall model performance

Figure 10a shows scatter diagram of model climate index 
(MCI) versus model variability index (MVI). The models 
that are in the grey shaded region perform better than the 
median model performance in simulating both the mean 
and interannual variability of the indices. It is apparent 
that only LOCA, VR-CESM models, and MPI-ESM-LR.
CRCM5-UQAM (L) perform better than the median model 
performance by both measures. Models show moderate skill 
in simulating both the mean and temporal variability of the 
indices, as indicated by the correlation score of 0.5 between 
MCI and MVI values.

The overall relative performance of models shown in the 
panel (a) are affected by the inclusion of LOCA models in 
calculating the median MCI and MVI values (vertical and 
horizontal dashed lines). Therefore, we recomputed the rela-
tive model performance without including LOCA models, 

as shown in Fig. 10b. Now some new models (CanESM2.
CanRCM4 (A), CanESM2.CRCM5-UQAM (C), GEMatm-
MPI.CRCM5-UQAM (E), MPI-ESM-LR.CRCM5-OUR 
(K) and MPI-ESM-LR.CRCM5-UQAM (L)) also appear to 
perform better than the median model values. One point that 
is not obvious from these figures is that these models have 
similar or better performance than the reanalyses datasets. 
However, we add a caveat here that any metric-based inter-
pretation of model performance should be considered with 
caution. To illustrate this point, note that model CanESM2.
CRCM5-UQAM (C) completely misses the phase of varia-
tion of annual cycle of precipitation (Fig. 1) and seasonal-
ity of extremes (Fig. 3), and model CanESM2.CanRCM4 
(A) misses the timing of extremes (Fig. 3). Since different 
physical processes drive precipitation over Florida during 
summer and winter, missing the annual cycle and/ or season-
ality of extremes by models CanESM2.CanRCM4 (A) and 
CanESM2.CRCM5-UQAM (C) suggests misrepresentation 
of physical processes in these models.

5  Summary and discussion

This paper evaluates simulations of precipitation related 
quantities and indices from the ETCCDI in suites of dynami-
cally and statistically downscaled regional climate models 
(RCMs) against the station-based GHCN datasets. The 
dynamically downscaled models include RCMs involved in 
the NA-CORDEX program, and three different simulations 
of variable resolution community earth system models (VR-
CESM) distinguished by the spatial extent of the inner fine 
resolution domain (28km): WAT (Western North Atlantic 
+ Eastern US), REF (entire North Atlantic + Eastern US), 
and EXT (entire North Atlantic + Eastern US + Africa). 
The statistically downscaled RCMs analyzed are a subset 
of CMIP5 models statistically downscaled using the local-
ized constructed analogue (LOCA) technique. To provide an 
estimate of uncertainty in observation-based datasets three 
in situ-based (PRISM, Livneh, CPC) and three reanalyses 

Table 4  Precipitation indices 
used in this study

Wet days are defined as days with precipitation ≥ 1 mm. Dry days are defined as days with precipitation < 
1 mm. Base period 1981–2005 is used to compute 95th percentile of precipitation. For more details about 
the indices refer to Zhang et al. (2011)

Index Description Unit

PRCPTOT Annual total precipitation during wet days mm/year
SDII Mean daily precipitation during wet days mm/day
CDD Annual maximum of cumulative dry days days
CWD Annual maximum of cumulative wet days days
Rx5day Annual maximum 5-day precipitation total mm/5day
R95ptot Total annual precipitation from days > 95th percentile mm/year
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(MERRA2, ERA5, NARR) are also evaluated against the 
GHCN data.

The broad objective of this study is to evaluate the perfor-
mance of regional climate models in simulating the observed 
spatial and temporal variability of precipitation indices, and 
to compare their performance with the gridded observational 
datasets. This study also analyzes the annual cycle of pre-
cipitation and the seasonality of extreme precipitation to 
complement the indices-based evaluation of the models.

First we discuss systematic biases exhibited by the data-
sets. Our analysis suggests that in situ-based gridded data-
sets perform the best in capturing all aspects of precipita-
tion analyzed here (annual cycle, seasonality of extreme 
precipitation, ETCCDI indices and 10-year return levels 
of Rx5day). However, the in situ-based datasets show large 
biases in simulating the mean SDII (underestimation by 
10–40 %) and CWD (overestimation by 20–80%). The rea-
nalyses show large uncertainty in simulating the precipita-
tion related quantities. For example, all reanalyses gener-
ally capture the phase of the annual cycle but underestimate 
the magnitudes in summer months. Similarly, all reanaly-
ses overestimate the frequency of extremes in winter and 
underestimate the seasonality in summer months. Despite 
assimilating hourly precipitation, NARR shows considerable 
biases in all precipitation quantities analyzed here. Specifi-
cally, both ERA5 and NARR significantly underestimate the 
10-year return level of Rx5day  by 20% or more. Also, all the 
three reanalysis datasets severely underestimate PRCPTOT, 
SDII ( > 20%) and overestimate CWD ( > 60%) indicating 
that the reanalyses suffer from a too-light-but-too-frequent 
precipitation problem. The NA-CORDEX models show 
large variability in the simulation of annual cycles and sea-
sonality of extremes. For example, Some models such as 
CanESM2.CRCM5-OUR and CanESM2.CRCM5-UQAM 
do not capture the phase of variation of the annual cycle, 
and all three NA-CORDEX models driven by CanESM2 
completely miss the phase of variation of the seasonality of 
extremes. All NA-CORDEX models underestimate the mag-
nitude of the annual cycle in summer. The NA-CORDEX 
models generally show similar systematic biases in most 
of the indices. For example, they overestimate PRCPTOT, 
R95ptot, and CWD and they underestimate SDII and CDD 
by a large proportion. This pattern of systematic biases sug-
gests two problems with the NA-CORDEX models: First, 
the NA-CORDEX models suffer from frequent precipitation, 
a known problem in climate models potentially related to 
erroneous convection parameterizations. Second, precipi-
tation in climate models represents an average value in a 
grid box, and therefore, is expected to be smaller than point 
based precipitation. The fact that the precipitation intensi-
ties are higher in NA-CORDEX models indicates that these 
models be considered with caution. The VR-CESM models 
capture the phase of the annual cycle very well, but severely 

Fig. 10  Scatter diagram of model climate  index (MCI) versus 
model variability index (MVI). The indices are defined in the meth-
ods section. The horizontal dashed and vertical lines are the median 
of MVI and MCI values respectively. Models that lie in the grey 
shaded region overall perform better than the median of overall per-
formance of models in simulating the mean and IQR of the indices. 
The numbers on the upper-left side of each panel show the correlation 
between MCI and MVI; that correlation indicates the linear relation-
ship between how well a model simulates the mean climatology of 
indices and its ability to capture inter-annual variability of the indi-
ces. Blue circle indicates a model that does not capture the phase of 
annual cycle  of precipitation as shown in Fig. 1. Red square denotes 
a model that does not simulate the phase of seasonality of extremes as 
shown in Fig. 3. Letters denote models as listed in Tables 1, 2 and 3. 
Panel a LOCA models (O, P, Q, R) included. Panel b LOCA models 
not included
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underestimate all precipitation indices (both intensity and 
duration based). This indicates that VR-CESM models 
underestimate the precipitation systematically across a range 
of precipitation intensities. As for LOCA models, they gen-
erally perform better than all of the models and reanalyses 
datasets mostly because they are bias-corrected datasets. 
The datasets generally show similar pattern of biases in the 
interquartile range (IQR) as in the mean indices for SDII, 
CWD and CDD. For other indices, more often than not, the 
patterns of biases in IQRs are roughly similar to those in the 
mean indices.

The metric evaluation of models using centered root-
mean-squared-error (RMSE) (spatially averaged biases 
removed) also suggests that in situ-based datasets generally 
perform better than all other datasets in simulating the mean 
and interannual variability of indices. Reanalyses datasets 
show large uncertainty in simulating the mean and IQR of 
the indices. For example, for both the mean and IQR of the 
indices, ERA5 performs better than all other datasets except 
the in  situ-based datasets. But, NARR performs poorer 
than the median model performance for mean indices, and 
MERRA2 performs worse than the median model perfor-
mance for IQR. NA-CORDEX models show large ranges of 
RMSE values for both the mean and IQR of indices. Gener-
ally, RegCM4 and WRF models perform poorer than the 
majority of models. MPI-ESM-LR.CRCM5-UQAM is the 
only NA-CORDEX model that performs better than all the 
other dynamical models and a few LOCA models in captur-
ing both the mean and IQR of the indices. All three VR-
CESM models show similar performance, and they perform 
better than the majority of the models for most of the indices 
except CWD. LOCA models generally perform better than 
median model performance; but they are not always the best 
of all models despite the fact that they are bias-corrected 
models.

We finally estimate overall performance of models 
in simultaneously simulating the mean and interannual 
variability of the indices. Figure 10 shows that generally 
LOCA, VR-CESM, and a couple of NA-CORDEX mod-
els (CanESM2.CanRCM4, CanESM2.CRCM5-UQAM, 
GEMatm-MPI.CRCM5-UQAM, MPI-ESM-LR.CRCM5-
OUR and MPI-ESM-LR.CRCM5-UQAM) have overall bet-
ter performance than the other models. Models generally 
show moderate relative skill in capturing both the mean and 
variability of the indices.

This study highlights the importance of evaluation of his-
torical performance of regional climate models when con-
sidering small spatial regions. Models that do not capture 
different aspects of precipitation with sufficient skill are of 
limited use to end users such as local stakeholders (e.g., 
water managers) and hydrologic modelers. However, we do 
recognize a limitation of this study. As pointed out by Alex-
ander et al. (2020), the indices based analyses do not tell the 

complete story of model performance; a study like this one 
should be complemented by process-based analyses for more 
detailed investigation of model’s performance.
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