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Abstract
This study examines the linear orthogonal modes associated with monthly precipitation in the northeastern United States, 
from CESM1 LENS (35 ensemble members, 1979–2005) and two reanalysis datasets (ERA5, 1950–2018 and NOAA-
CIRES-DOE 20CRv3, 1950–2015). Calendar months are aggregated together, and any linear trends in data are removed. 
Using region-averaged precipitation anomaly time series and monthly anomalies for several global 2D atmospheric fields, 
a linear orthogonal decomposition method is implemented to iteratively extract time series (based on field and geographic 
location) of absolute maximum correlation. Linear modes associated with this method are then projected onto the full set 
of 2D fields to provide physical insight into the mechanisms involved in generating precipitation. In this region, the first 
mode is associated with vapor transport from the Atlantic seaboard, the second mode is characterized by westward vapor 
transport associated with extratropical cyclones, and the third mode captures vapor transport from the Gulf of Mexico during 
the fall and winter. However, the third mode is less robust in the spring and summer. Results are generally consistent across 
the datasets, and applying multiple linear regression with the linear modes to predict the precipitation anomalies produces 
R-squared values of around 0.54–0.65 for CESM1 LENS, and around 0.58–0.88 for reanalysis, with the lowest values 
generally in the spring and late summer. The influence of low-frequency climate variability on the modes is considered for 
CESM1 LENS, and the modes in late winter can be predicted with some success via a combination of several, prominent 
large-scale teleconnection patterns.

Keywords  Northeastern U.S. precipitation · Linear orthogonal decomposition · Linear modes · Teleconnections · Large-
scale circulation

1  Introduction

The northeastern United States (hereafter the Northeast) is 
home to a dense human population and encompasses a vari-
ety of agricultural and economic interests that are reliant on 
the available water resources and the replenishment of those 
resources via precipitation. However, water availability in 
this region is expected to be altered under climate change 
(Melillo et al. 2014). These trends are particularly impor-
tant at the ends of the precipitation spectrum (i.e., extreme 
precipitation and droughts), as these events risk billions of 
dollars’ worth of damage to infrastructure, property, and 
agriculture (Lott and Ross 2006). Observations have shown 

an upward trend in the frequency and intensity of extreme 
precipitation in the Northeast in the last several decades 
(Kunkel et al. 1999; DeGaetano 2009; Pryor et al. 2009; 
Kunkel et al. 2013; Howarth et al. 2019). This region has 
also experienced several major droughts in the twentieth 
century (Seager et al. 2012), and model projections sug-
gest more short-term droughts in the region due to warm-
ing and increased evaporative demand (Hayhoe et al. 2007). 
The most famous of these droughts, which persisted over 
the 1962–1967 period (Namias 1966), had major implica-
tions for agricultural and water management practices, and 
still serves as the standard for future water resource plan-
ning. Given the many problems that can be associated with 
an increased frequency in both extreme precipitation and 
drought conditions, it has become increasingly important 
to gain a better understanding of the dominant, large-scale 
atmospheric drivers of precipitation in the Northeast, par-
ticularly those that accompany both wet and dry extremes. 
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Such an understanding provides meaningful insight for 
stakeholders with interests pertaining to future resource 
allocations and water management practices in the region.

The Northeast exhibits seasonal cycles for several precipi-
tation characteristics, such as number of precipitating days, 
precipitation intensity, and precipitation total. These char-
acteristics are discussed in detail in Agel et al. (2015) (here-
after A015), and are summarized in part here. Precipitation 
intensity tends to have a large annual variation, with a peak 
in late summer and dual peaks in the spring and fall. These 
differences in seasonal precipitation characteristics are due 
in part to the large-scale features and storm tracks associated 
with daily precipitation in the region. Extratropical storms 
account for 80–85% of the total precipitation from December 
to May (Pfahl and Wernli 2012; A015), and the dual peak 
in precipitation intensity in the spring and fall is related to a 
weakening of storm-related intensity in May (Pfahl and Wer-
nli 2012; A015). Storm track also plays a key role in this sea-
sonal cycle, and in each season, there are two broad regions 
with the greatest storm track density: one over the Great 
Lakes region and another over the Atlantic seaboard (Kocin 
and Uccellini 2004; Pfahl and Wernli 2012; A015). Track 
density is highest in the winter and spring, and during the 
summer and fall, track density in these areas is weaker and 
shifted northward into the lower portion of eastern Canada. 
In the summertime, while extratropical cyclone activity is 
reduced, localized convection, mesoscale convective activity 
(Feng et al. 2019), and tropical cyclones (Barlow 2011) can 
be important drivers of precipitation in the region.

Winter precipitation variability in the Northeast has 
been shown to be more significantly related to the large-
scale circulation than in other seasons (Ning et al. 2012a). 
Previous studies (e.g., Hartley and Keables 1998; Kunkel 
and Angel 1999; Bradbury et al. 2003) have demonstrated 
that prominent, large-scale teleconnection patterns, such as 
the North Atlantic Oscillation (NAO) (Wallace and Gutzler 
1981; Barnston and Livezey 1987), the Pacific-North Amer-
ican pattern (PNA) (Wallace and Gutzler 1981; Leathers 
et al. 1991), and the El Niño-Southern Oscillation (ENSO) 
(Trenberth 1997), can have important influences on winter 
precipitation in the Northeast.

However, the relationships identified between winter 
precipitation and the large-scale teleconnection patterns are 
generally not robust (Ropelewski and Halpert 1986; Hur-
rell 1995; Bradbury et al. 2002a, 2002b; Archambault et al. 
2008). This lack of statistical significance is hypothesized 
to be because regional precipitation has inherent, complex 
variability, and the large-scale modes of climate variability 
previously discussed also have differing influences across 
the Northeast. As such, it becomes difficult to identify their 
influence when examining the domain holistically. Indeed, as 
determined by Ning and Bradley (2014), linear correlation 
and composite analysis show that different teleconnection 

patterns have significant influences on different precipita-
tion patterns, which may explain why previous studies (e.g., 
Bradbury et al. 2002a; Archambault et al. 2008) did not find 
robust relationships between total winter precipitation over 
the whole domain and individual teleconnection patterns.

Our work here seeks to build upon the existing literature 
related to understanding the large-scale processes that are 
important in producing conditions favorable to precipita-
tion in the Northeast and assessing the role that large-scale 
teleconnection patterns may have in those processes. Since 
this study is primarily concerned with water availability, we 
focus on monthly accumulated precipitation. Recent stud-
ies, such as Agel et al. (2015, 2017, 2019), have addressed 
the climatology of extreme precipitation in the context of 
overall precipitation in the region (A015), the large-scale 
meteorological patterns (LSMPs) associated with that 
precipitation (Agel et al. 2017; hereafter A017), and the 
dynamical structures and key ingredients for extreme pre-
cipitation, such as moisture and instability, that are linked 
to those LSMPs (Agel et al. 2019). Their analysis of the cli-
matology of overall precipitation in the Northeast provides 
an excellent reference point for understanding the seasonal 
trends in the regional precipitation, and their assessment 
of the LSMPs and their associated dynamical pathways 
informs us about which processes are crucial in generat-
ing precipitation. However, these analyses have focused on 
daily, extreme precipitation and have primarily examined 
the LSMPs associated with that precipitation via the use of 
clustering methods.

Studies such as these are nonetheless informative to 
understanding monthly-averaged precipitation, because it 
is reasonable to assume that most months in which there are 
more precipitating days will have greater monthly-averaged 
precipitation amounts (See Fig. S13 in the Online Resource). 
This also indicates that smaller-scale features, such as local-
ized convection, fronts and extratropical cyclones, which 
can facilitate heavier precipitation, directly impact monthly 
precipitation totals.

In this study, we seek to improve the current understand-
ing of environmental conditions favorable to Northeast pre-
cipitation and quantify the relative contributions to precipi-
tation amount from upstream drivers. This is achieved by: 
(I) examining a large number of meteorological fields to 
understand which are likely associated with precipitation 
in the region, (II) using a novel linear orthogonal decom-
position-based technique, instead of clustering analysis, 
in order to identify a set of independent large-scale modes 
that are nearly optimal for prediction of precipitation totals, 
(III) using multiple linear regression (MLR) to determine the 
amount of precipitation variability explained by the linear 
combination of those atmospheric modes, and (IV) deter-
mining the influence of several large-scale teleconnection 
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patterns on precipitation predictability via an analogous 
MLR framework.

The preceding paragraphs frame our study in the context 
of previous studies that have examined Northeast precipita-
tion and its associated large-scale drivers, and outline some 
of contributions our study can make to the existing literature. 
Specifically, in this present work, we seek to address the 
following questions:

1)	 What are the dominant, large-scale atmospheric driv-
ers of precipitation in the northeastern United States, as 
identified by a linear orthogonal decomposition?

2)	 How well can multiple linear regression models predict 
monthly-averaged precipitation in the Northeast?

3)	 How well does CESM1 LENS compare to reanalysis 
products with regards to the linear orthogonal modes 
identified in this study?

4)	 What is the dependence of the linear orthogonal modes 
on low-frequency modes of climate variability?

To address these questions, monthly-averaged precipita-
tion in the Northeast is examined in connection with several 
“basic” atmospheric fields. The linear orthogonal decompo-
sition is used to sub-sample the time series of all predictor 
fields at all grid points in order to maximize the linear pre-
dictability, in the sense of multiple linear regression (MLR). 
Such an approach is complementary to other methods for 
decomposing the meteorological fields that drive precipi-
tation, such as k-means clustering analysis; however, one 
advantage of the linear decomposition is that the linear 
modes are easily combined within a single linear model, 
while total precipitation amounts are more difficult to extract 
from clustered fields. The approach pursued in this study 
can provide improved insight into the monthly trends and 
variability associated with Northeast precipitation, as well 
as inform the level of linear predictability for precipitation in 
the region via an understanding of key atmospheric features.

The remainder of the paper is organized as follows. Data-
sets are described in Sect. 2. Methodology is discussed in 
Sect. 3. Results and analysis of selected linear orthogonal 
modes are provided in Sect. 4. The paper concludes with a 
summary and discussion in Sect. 5.

2 � Data

Our study makes use of both reanalysis and large ensemble 
model simulations. For reanalysis, monthly data is drawn 
from the ERA5 dataset (Hersbach et al. 2020) at 0.25◦ × 
0.25

◦ latitude/longitude grid spacing, and from the NOAA-
CIRES-DOE 20CRv3 dataset (Slivinski et al. 2019), with 
latitude/longitude grid spacing of 1.0◦ × 1.0◦

. ERA5 covers 

the period from 1950 to 2018 (69 years), while NOAA-
CIRES-DOE 20CRv3 covers 1950–2015 (66 years). Both 
datasets include monthly-averaged data on single levels, as 
well as monthly-averaged data on several pressure levels 
(i.e., 500 hPa and 850 hPa). We also employ the CESM1 
LENS dataset (Kay et al. 2015), which uses a 0.94240838◦ 
× 1.25◦ latitude/longitude grid. For CESM1 LENS, we 
draw on data from a subset of the historical period, from 
1979 to 2005, and from the first 35 ensemble members of 
the dataset (giving 35 ensemble members × 27 years = 945 
samples for each month), which provides the advantage of 
producing many more samples for analysis in each month. 
We seek to understand the large-scale drivers of North-
east precipitation for each calendar month (i.e., January, 
February, …, November, December) separately. In the 
case of CESM1 LENS, this aggregation is also performed 
over all ensemble members. As such, the monthly data for 
each calendar month are aggregated together and analyzed 
separately from the other calendar months. For example, 
after aggregation, we would have 69, 66, and 945 concat-
enated Januarys for ERA5, NOAA-CIRES-DOE 20CRv3, 
and CESM1 LENS, respectively, for use in our analysis. 
This aggregation is similarly done for the other calendar 
months. Of important note is the difference in the variety 
of atmospheric fields between the reanalysis products and 
the CESM1 LENS dataset. ERA5 and NOAA-CIRES-DOE 
20CRv3 offer many more fields for analysis as compared 
to CESM1 LENS, in part due to the relatively large space 
requirements when CESM1 LENS was generated. As a 
result, for the purposes of congruency between our assess-
ment of the reanalysis products and model simulations, 
we have chosen to examine only atmospheric fields that 
are common to all three datasets. These fields are referred 
to now as “basic” atmospheric fields and include: geo-
potential height at 500-hPa (“Z500”), specific humidity 
at 850-hPa (“Q850”), zonal wind at 850-hPa (“U850”), 
meridional wind at 850-hPa (“V850”), sea-level pres-
sure (“PSL”), two-meter temperature (“T2M”), eastward 
integrated vapor transport (“IVTe”), northward inte-
grated vapor transport (“IVTn”), sea-surface temperature 
(“SST”) and 700-hPa omega (“ω700ε) . Total precipitation 
(“PRECT”) is also drawn from the three datasets, and a 
regional, area-averaged PRECT time series is calculated, 
using a geographic domain of 40–45 ◦N and 70–75 ◦W for 
the Northeast, for use in our methodology (See Sect. 3). 
Sensitivity testing for this domain was conducted to verify 
the robustness of our methodology and results. The results 
of this testing are given in Sect. 4 of the Online Resource. 
IVTe and IVTn are not readily given from NOAA-CIRES-
DOE 20CRv3 and CESM1 LENS, and so are approximated 
from the Q850, U850, and V850 fields.
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3 � Methodology

3.1 � Linear orthogonal decomposition (LOD)

Here we provide an overview and summary of the LOD 
method. The mathematical details of the method can be 
found in Appendix A.

As stated in Sect. 1, the goal of the LOD method is 
to sub-sample the time series of all predictor fields at all 
grid points in order to maximize linear predictability in 
the context of MLR. To begin, for a particular calendar 
month of aggregated data (ex. January), a reference state 
(in our analysis this is the climatological monthly mean) is 
first subtracted away from the precipitation time series and 
the 2D atmospheric fields, to generate anomalies of those 
data. If an obvious and undesired trend is present in the 
time series, it can be removed by using a time-dependent 
linear field instead. The iterative procedure begins with the 
following: (1) the precipitation anomaly time series is cor-
related with each 2D anomaly atmospheric field, at each 
grid point, (2) the 2D anomaly atmospheric field and grid 
point of absolute maximum correlation is then identified, 
and used to create a linear model of the original precipita-
tion anomaly time series, (3) this linear model precipita-
tion (in this case, LOD Mode 1) is then subtracted away 
from the original precipitation anomaly time series. This 
will give us the remainder of the original precipitation 
anomaly time series that has yet to be predicted. Steps 1–3 
are then repeated iteratively, with the original precipitation 
anomaly time series replaced with the unpredicted remain-
der. In Steps 2 and 3, we impose orthogonality constraints 
so that the time series of each identified linear mode is lin-
early independent from all others. In reality, the processes 
associated with each linear mode are not independent from 
each other. However, in our study, applying this artificial 
orthogonality criteria allows us to better isolate the indi-
vidual contribution of particular large-scale drivers to the 
regional precipitation.

To our knowledge, such an approach has not been 
employed for assessing the linear predictability of pre-
cipitation in a region from relevant atmospheric fields. 
Instead, most studies employ principal component analysis 
(PCA) as a means of determining key modes. The linear 
orthogonal decomposition approach is somewhat analo-
gous, with each extracted linear mode being orthogonal 
to the others. However, it brings an added nuance in that 
modes are tied directly to the variable being predicted, and 
allows us to iteratively extract the features across all 2D 
fields that are most strongly correlated with the monthly, 
region-averaged precipitation. The iterative method 
may be terminated at any point—here, we terminate our 
CESM1 LENS analysis at iteration N when the maximum 

absolute correlation at iteration N + 1 is < 0.10. For rea-
nalysis products, global correlations tend to be higher, and 
so the process is terminated with a higher absolute cor-
relation threshold of 0.20. Note that, while the iterative 
strategy described above does not guarantee the modes 
selected are the optimal set of modes to maximize pre-
dictability, they are certainly a close approximation to 
this optimum. Indeed, we expect finding such an optimal 
combination of field vectors would require an exhaustive 
search of all possible sets, which would make the problem 
computationally intractable.

Through the employ of multiple climate data products, we 
can ascertain whether or not a particular mode is likely to 
have physical meaning. Namely, we posit that if a particular 
linear orthogonal mode from our analysis appears consistent 
across such a set of high-quality products, we can say that 
the patterns exposed by the linear orthogonal decomposi-
tion are robust. On the other hand, if a particular mode is 
inconsistent across products, it is likely to be a manifestation 
of structural uncertainty or weather variability (i.e., the com-
ponent of the precipitation that is inherently unpredictable).

3.2 � Multiple linear regression (MLR) using linear 
modes to predict PRECT

For the analysis of each particular calendar month of aggre-
gated data, a multiple linear regression (MLR) model is gen-
erated, using the time series of the linear modes as predictors 
and the original precipitation anomaly time series as pre-
dictand. Indeed, it can be shown that the root mean square 
error of this MLR model is related to the “unexplained pre-
cipitation” at each step of the process via the expression 
RMSEn = 

√
1

N−n−1
(�̂n ⋅ �̂n  ), where �̂n is the unpredicted 

precipitation at iteration step n. The MLR model enables us 
to validate our above scheme by providing additional con-
firmation of the explained variance afforded by the “basic” 
atmospheric fields that was calculated in Part A. Addition-
ally, MLR also provides the 95% confidence range for the 
coefficients associated with each linear mode time series. 
These coefficients, in conjunction with the linear mode time 
series, allow us to determine how well our extracted modes 
combine linearly in the predictability of the monthly, region-
averaged precipitation, and allow us to test whether or not 
these time series are in fact statistically significant 
predictors.

3.3 � Multiple linear regression (MLR) using climate 
indices to predict linear modes

In a similar process to that discussed in Sect. 3.2, for the 
analysis of a particular month, an MLR model is built with 
several climate indices being used as predictors, and each 
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linear mode time series being the predictand. The climate 
indices under consideration are: AMO, DMI, IPO, NAO, 
Nino1 + 2, Nino3, Nino3.4, Nino4, PDO, and PNA. All 
climate indices are initially included in the linear model 
regression for each linear mode time series. After the initial 
regression output, a recursive elimination approach is used 
to select only the climate indices that are significant at the 
99% confidence level (p-value < 0.01). This feature selection 
based on recursive elimination is done for each linear mode 
time series for each calendar month of aggregated data.

4 � Results

4.1 � CESM1 LENS: discussion of LOD modes

As discussed previously, the linear orthogonal decomposi-
tion method allows us to determine the large-scale modes 
and processes that are most closely associated with monthly-
averaged precipitation in the Northeast. These processes that 
are important in the generation of precipitation will often 
be embedded within large-scale meteorological patterns 
(LSMPs; Grotjahn et al. 2016), and these LSMPs in turn 
describe the atmospheric circulation that can be attributed 
to specific phenomena, in this case, precipitation in the 

Northeast. However, often the LSMPs themselves may not 
be the primary drivers and/or direct influencers of the gener-
ation of precipitation. Rather, these LSMPs provide a favora-
ble environment for other processes to generate precipitation 
(A017). Our linear orthogonal modes are analogous to these 
LSMPs, and while our LSMP-like linear orthogonal modes 
lack a local consistency metric, contour shading in our plots 
indicates statistically significant (p-value < 0.05) regions in 
our modes based on Student’s t-testing. As such, the modes 
generated by the linear orthogonal decomposition are able 
to capture several important large-scale drivers of precipi-
tation in the region. Given the similarity in results between 
the reanalysis products and CESM1 LENS, the larger sam-
ple size afforded by CESM1 LENS that allows us to avoid 
overestimation of the predictability of the LOD modes, and 
because this work is focused on understanding these large-
scale drivers of precipitation as a means for informing future 
resource allocations and water management practices in the 
region, we choose to highlight the CESM1 LENS results 
here in Sect. 4 Results for the reanalysis products are similar 
to these, and are shown in the Online Resource.

i. Winter and Early Spring
Our analysis of January for CESM1 LENS data (Figs. 1, 

2, and 3) is used here to capture the large-scale conditions 

Fig. 1   CESM1 LENS January Linear Mode 1 for overall precipitation 
correlated with anomaly fields for a 500-hPa geopotential height, b 
850-hPa specific humidity, c sea-level pressure, d two-meter tempera-
ture, e eastward integrated vapor transport, f northward integrated 

vapor transport, g sea-surface temperature, h 700-hPa omega, and i 
total precipitation. Contour shading indicates significance at the 95% 
confidence level. Percentage is fraction of precipitation variance 
explained by the first linear mode in January
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Fig. 2   Same as Fig. 1, but for Linear Mode 2

Fig. 3   Same as Fig. 1, but for Linear Mode 3
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that are conducive to wintertime precipitation in the 
Northeast. Results for December, February, and March 

are similar, and can be found in the Online Resource. The 
results of our linear orthogonal decomposition method for 

Table 1   Linear orthogonal decomposition results for CESM1 LENS data

First four columns represent the first four linear orthogonal modes. Rows for the first four columns indicate, respectively, (i) selected atmos-
pheric field and geographic grid point, (ii) linear regression coefficient value, (iii) 95% confidence range for the coefficient value, (iv) fraction 
of explained variance of the precipitation data. Last column indicates R-squared value produced from multiple linear regression using the linear 
orthogonal modes to predict precipitation

LOD Results for CESM1 LENS

dp̂1 dp̂2 dp̂3 dp̂4 R-Squared Value

January IVTn(72 ◦W,37 ◦N)
0.5979
[0.56,0.64]
35.7%

U850(71 ◦W,45 ◦N)
0.4556
[0.42,0.49]
20.8%

IVTn(98 ◦W,42 ◦N)
0.2436
[0.21,0.28]
5.9%

Z500(92 ◦W,18 ◦N)
0.1208
[0.08,0.16]
1.5%

0.639

February IVTn(71 ◦W,37 ◦N)
0.6317
[0.59,0.67]
39.9%

U850(70 ◦W,46 ◦N)
0.3884
[0.35,0.43]
15.1%

Z500(110 ◦W,49 ◦N)
0.2784
[0.24,0.32]
7.8%

PSL(90 ◦W,47 ◦N)
0.1506
[0.11,0.19]
2.3%

0.650

March IVTn(70 ◦W,38 ◦N)
0.6085
[0.57,0.65]
37.0%

U850(71 ◦W,46 ◦N)
0.4216
[0.38,0.46]
17.8%

Z500(110 ◦W,48 ◦N)
0.2664
[0.23,0.31]
7.1%

IVTe(75 ◦W,37 ◦N)
0.1164
[0.08,0.16]
1.4%

0.632

April IVTn(70 ◦W,39 ◦N)
0.5752
[0.54,0.62]
33.1%

U850(71 ◦W,46 ◦N)
0.4504
[0.41,0.49]
20.3%

Z500(105 ◦W,50 ◦N)
0.2136
[0.17,0.25]
4.6%

IVTe(76 ◦W,38 ◦N)
0.1486
[0.11,0.19]
2.2%

0.601

May IVTn(70 ◦W,40 ◦N)
0.5310
[0.49,0.57]
28.2%

U850(71 ◦W,46 ◦N)
0.5108
[0.47,0.55]
26.1%

IVTe(77 ◦W,38 ◦N)
0.2398
[0.20,0.28]
5.7%

T2M(52 ◦W,41 ◦N)
0.1821
[0.14,0.22]
3.3%

0.634

June IVTn(68 ◦W,40 ◦N)
0.6450
[0.61,0.68]
41.6%

IVTe(70 ◦W,46 ◦N)
0.4190
[0.38,0.46]
17.8%

IVTe(75 ◦W,39 ◦N)
0.2225
[0.19,0.26]
4.9%

IVTn(89 ◦E,20 ◦N)
0.1038
[0.07,0.14]
1.1%

0.652

July IVTn(70 ◦W,40 ◦N)
0.6964
[0.66,0.74]
49.5%

IVTe(71 ◦W,46 ◦N)
0.3632
[0.33,0.40]
13.2%

Z500(92 ◦W,36 ◦N)
0.1390
[0.10,0.18]
1.9%

0.636

August IVTn(68 ◦W,40 ◦N)
0.5355
[0.49,0.58]
28.7%

IVTe(72 ◦W,46 ◦N)
0.4661
[0.42,0.51]
21.7%

IVTe(76 ◦W,39 ◦N)
0.2466
[0.20,0.29]
6.1%

0.565

September IVTn(68 ◦W,39 ◦N
0.4827
[0.44,0.53]
28.8%

U850(71 ◦W,46 ◦N)
0.4411
[0.40,0.48]
19.1%

IVTe(80 ◦W,39 ◦N)
0.2888
[0.25,0.33]
4.8%

T2M(56 ◦W,42 ◦N)
0.1779
[0.14,0.22]
2.4%

0.543

October IVTn(70 ◦W,39 ◦N)
0.5918
[0.55,0.63]
35.0%

U850(70 ◦W,47 ◦N)
0.4646
[0.43,0.50]
21.6%

Z500(80 ◦W,27 ◦N)
0.1920
[0.15,0.23]
3.7%

Z500(57 ◦W,24 ◦N)
0.1168
[0.08,0.16]
1.4%

0.617

November IVTn(71 ◦W,36 ◦N)
0.5719
[0.53,0.61]
32.7%

U850(70 ◦W,46 ◦N)
0.4549
[0.41,0.50]
20.7%

V850(62 ◦W,26 ◦N)
0.1958
[0.16,0.24]
3.8%

Q850(73 ◦W,40 ◦N)
0.1531
[0.11,0.19]
2.3%

0.596

December IVTn(72 ◦W,37 ◦N
0.5550
[0.52,0.60]
30.8%

U850(70 ◦W,45 ◦N)
0.4783
[0.44,0.52]
22.8%

Z500(111 ◦W,42 ◦N)
0.2516
[0.21,0.29]
6.3%

Q850(106 ◦W,12 ◦N)
0.1074
[0.07,0.15]
1.2%

0.612
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CESM1 LENS are given in Table 1, and are discussed in 
part here and in the other subsections of Sect. 4.1.   

After applying the methodology discussed in Sect. 3, it 
emerges that the first linear mode is associated with north-
ward integrated vapor transport (IVTn) (Fig. 1f), which is 
maximal along the Atlantic seaboard near coastal Virginia, 
the second linear mode is associated with weakened west-
ward integrated vapor transport (IVTe) over the North-
east (Fig. 2e), and the third linear mode is associated with 
northward integrated vapor transport (IVTn) originating 
from the Gulf of Mexico region (Fig. 3f). Recall that in 
each iteration step, the selected time series of data (based 
on field and geographic location) is determined by abso-
lute maximum correlation with the region-averaged pre-
cipitation anomaly time series. Projecting these selected 
time series (our linear modes) onto the 2D meteorological 
fields (i.e., calculating their correlations with each point in 
the field, as in Step 1 of Sect. 3.1) provides further insight 
into the physical mechanisms that can lead to precipita-
tion. Looking at Fig. 1a, the east–west dipole of Z500 over 
the central United States and the North Atlantic provides a 
favorable mechanism for integrated vapor transport from 
the west and south. Increased moisture transport into the 
region, coupled with enhanced vertical motion (as seen in 
the � 700 field, Fig. 1h), creates a conducive environment 
for precipitation to occur. This finding is reasonable, as 
ocean-enhanced transport from the south or southeast can 
provide a rich source of water vapor into the Northeast. 
A017 demonstrate that IVTn is stronger for extreme pre-
cipitation as compared to interquartile (25–75th percen-
tile) precipitation. This suggests that precipitation totals 
in January (and winter and early spring as a whole) are 
strongly connected to the amount of southerly moisture 
transport into the region. Correlation plots based on the 
second linear mode for PSL, IVTe, and � 700 (Fig. 2) 
suggest that low surface pressure to the south of the North-
east drives a weakening of the westerly flow and leads to 
moisture convergence. This is attributed, at least in part, 
to enhanced extratropical cyclone activity near this region. 
Enhanced surface lows, originating from the midwestern 
or southeastern United States, can move northward into 
the region, and the associated cyclonic rotation of these 
systems can stimulate a weakening of the westerly flow 
that facilitates increased westward vapor transport and 
moisture convergence, while frontal activity can provide 
an additional lifting mechanism for precipitation to occur. 
Examining the Z500 and IVTn correlation plots for the 
third linear mode (Fig. 3) suggests that the location of 
high- and low-pressure systems can facilitate integrated 
vapor transport from the Gulf of Mexico into the central 
and east-central United States. In a similar (albeit weaker) 
manner to the first linear mode, increased southwesterly 

moisture convergence into the region can help to generate 
precipitation.

ii. Late Spring
Results for April (as shown in the Online Resource) 

demonstrates good similarity with the results for the winter 
period and March, with our respective modes of Atlantic 
seaboard vapor transport (first linear mode), westward vapor 
transport associated with extratropical cyclone activity (sec-
ond linear mode), and vapor transport from the Gulf of Mex-
ico (third linear mode). However, as we move later into the 
season, there is an eastward shift of the east–west dipole of 
Z500 over the central United States and the North Atlantic. 
This configuration continues to provide a favorable mecha-
nism for integrated vapor transport from the west and south, 
but indicates a transition period in the large-scale pattern 
over the conterminous United States. In terms of generating 
precipitation, this transition leads to the configuration for 
May (Figs. 4, 5, and 6), in which there is more noticeable 
shallow troughing in the Ohio River Valley. This pattern 
accompanies vapor transport from the south and south-
west (Fig. 4), but reduced vapor transport from the Gulf 
of Mexico (Fig. 6). As was the case in preceding months, 
the location of the trough acts to modulate processes such 
as vapor transport, low pressure development, and whether 
available moisture from the Gulf of Mexico can reach the 
Northeast. In the case of May, it appears that Gulf of Mexico 
vapor transport is not a relatively important process because 
it is does not make its way as far northward as in the winter 
months.

iii. Summer and Early Fall
Our results for July (Figs. 7 and 8) exhibit several nota-

ble differences from those discussed already for the winter 
and late spring months (similar results for June, August, 
and September; shown in Online Resource). While vapor 
transport from the Atlantic seaboard (first linear mode) is 
still a prominent process for the generation of precipitation, 
both the influence of extratropical cyclone activity (see sub-
section v in Sect. 4.1) and vapor transport from the Gulf 
of Mexico are diminished during this seasonal period, and 
seem to be replaced in part by other processes. Regarding 
the second linear mode, inspection of the Z500 correlation 
field (Fig. 8a) indicates a pressure ridge in southeastern 
Canada. The anticyclonic flow associated with a ridge pat-
tern in the north could facilitate moisture advection into the 
region. The warmer summer environment also leads to a 
substantial increase in moisture capacity, and warm, moist 
unstable air suggests an association with convective activ-
ity (Fig. 8h), such as localized thunderstorms. Additionally, 
while localized convection can be important for generat-
ing precipitation, shortwave vorticity maxima propagating 
through longwave ridges can create a mechanism for convec-
tion to occur within these ridge patterns themselves (Milrad 
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Fig. 4   CESM1 LENS May Linear Mode 1 for overall precipitation 
correlated with anomaly fields for a 500-hPa geopotential height, b 
850-hPa specific humidity, c sea-level pressure, d two-meter tempera-
ture, e eastward integrated vapor transport, f northward integrated 

vapor transport, g sea-surface temperature, h 700-hPa omega, and i 
total precipitation. Contour shading indicates significance at the 95% 
confidence level. Percentage is fraction of precipitation variance 
explained by the first linear mode in May

Fig. 5   Same as Fig. 4, but for Linear Mode 2
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Fig. 6   Same as Fig. 4, but for Linear Mode 3

Fig. 7   CESM1 LENS July Linear Mode 1 for overall precipitation 
correlated with anomaly fields for a 500-hPa geopotential height, b 
850-hPa specific humidity, c sea-level pressure, d two-meter tempera-
ture, e eastward integrated vapor transport, f northward integrated 

vapor transport, g sea-surface temperature, h 700-hPa omega, and i 
total precipitation. Contour shading indicates significance at the 95% 
confidence level. Percentage is fraction of precipitation variance 
explained by the first linear mode in July
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et al. 2014). Given that we are working with monthly aggre-
gated data, it would be difficult to fully resolve the influ-
ence of localized convective activity, and the mechanisms 
proposed in the previous few sentences are only hypotheses 
about what large-scale drivers may be associated with the 
second linear mode. It may just be the case that extratropical 
cyclone activity is still the relevant driver of precipitation 
in the mode, but is reduced in importance, relative to the 
winter and spring periods. The third linear mode for July 
(as shown in the Online Resource) is difficult to physically 
interpret and provides only a small fraction of explained 
precipitation variance (1.9%), and as such is not discussed 
in great detail here. We hypothesize that this third linear 
mode may correspond to enhancement of the environment 
conducive to mesoscale convective system (MCS) activity. It 
must be noted, however, that MCSs are more of a prominent 
feature in the central U.S., and occur with much less fre-
quency in the Northeast, even though these systems account 
for roughly 10–20% of total precipitation in the region dur-
ing the summer period (Feng et al. 2019). So, while MCSs 
can be heavy-precipitation events when they do occur, they 
are infrequent and would not be resolved in our monthly 
aggregated data, and we would refer readers to Feng et al. 
(2019) for further discussion of these systems. If this third 
mode is in fact related to MCSs, this may explain why our 
third linear mode in July explains only 1.9% of the precipita-
tion variance. 

iv. Fall to Late Fall
Our analysis for October and November (as shown in 

the Online Resource) demonstrates a return to a large-scale 
configuration with drivers that are similar to those found 
during the winter and early spring, namely Atlantic seaboard 
vapor transport (first linear mode), westward vapor trans-
port associated with extratropical cyclone activity (second 
linear mode), and vapor transport from the Gulf of Mexico 
(third linear mode). More specifically, the east–west Z500 
dipole found during October and November is similar to 
the configuration found during April, in which the dipole is 
now phase-shifted westward. This is likely due to the late 
fall being a transition period before the winter, in which this 
Z500 dipole is shifted further westward and stays in place 
during much of the winter and into the early spring.

v. Extratropical Cyclone (ETC) Activity
We have proposed that the second linear mode during 

the fall, winter, and spring is most closely associated with 
extratropical cyclone (ETC) activity to the south of our 
region of interest. This assertion, however, has not yet been 
demonstrated. It can be difficult to directly link synoptic-
scale (~ 1–3 day) systems, such as ETCs, with monthly 
precipitation totals, as averaging can potentially dilute the 
contribution of individual strong systems. However, in our 
study here, we are more interested in how our LOD modes 
modulate the large-scale environment in which these ETCs 

Fig. 8   Same as Fig. 7, but for Linear Mode 2
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are present and not necessarily with their actual precipitation 
amounts. To examine this relationship, we track the total 
number of time steps in 6-hourly daily data when ETC activ-
ity is present for a specific geographic domain relevant to the 
Northeast. In this way, we are able to link the synoptic-scale 
influence of ETCs to their relevance in influencing monthly 
precipitation totals. For tracking ETCs, we use the Tempes-
tExtremes software package (Ullrich and Zarzycki 2017), 
which allows for the tracking of pointwise features within 
climate datasets. Six-hourly data for surface pressure (PS) 
and geopotential at 300 hPa and 500 hPa (Z300 and Z500, 
respectively) are taken from CESM1 LENS for the period 
1990–2005 in each of the first 35 ensemble members and 
used to drive TempestExtremes, which then outputs the rel-
evant ETC tracking information, such as time, the latitude/
longitude of the cyclone centers and local sea-level pres-
sure. Output from TempestExtremes is then filtered for geo-
graphic relevance to the Northeast, with a latitude/longitude 
domain of 25–55 ◦N and 60–100 ◦W , respectively (Fig. 9, 
left). This choice of domain accounts for both the high-den-
sity North Atlantic storm track as well as the extratropical 
storms traveling across the Great Lakes region (Hoskins and 
Hodges 2002). After the filtering process, the total num-
ber of time steps with ETC activity are tabulated to gener-
ate separate “ETC Activity” time series for each calendar 
month of aggregated data (January–December). These time 

series are generated with the same aggregation method as 
discussed in Sects. 2 and 3. The time series can then be cor-
related with the appropriate subsection of our linear mode 
time series (Table 2).

Figure 9 (right) shows the monthly distribution of ETC 
activity. There are far more instances of ETC activity during 
the late fall and winter periods, and a decline during the late 
spring and summer. These results agree well with those of 
Hawcroft et al. (2012) and A015, which find that extratropi-
cal storms account for nearly 80–85% of total precipitation 
in late fall / winter periods, and indicates that extratropical 
cyclones are not a prominent feature for Northeast precipi-
tation during the late spring and summer periods. We can 
further validate the role of ETC activity in certain calendar 
months by examining the correlation values between our lin-
ear modes and the ETC Activity time series. From Table 2, 
we see that ETC activity is not well correlated with either 
the first or third linear modes. For the second linear mode, 
the correlation values are much higher and scale well with 
the total number of time steps with ETC activity in each 
month. This provides reasonable confidence that the second 
linear mode is related to ETCs traveling northward into the 
Northeast. As discussed previously, extratropical storms are 
an important driver of precipitation in the Northeast, and 
can be a primary driver of extreme precipitation conditions, 
as a large percentage of extreme precipitation along the 

Fig. 9   Geographic domain for ETC tracking (left) and total monthly instances of ETC activity (right) for CESM1 LENS. ETC tracking domain 
accounts for storms that move northward along the Atlantic seaboard and those from the Great Lakes region

Table 2   Correlation coefficient 
values between first three linear 
orthogonal modes and ETC 
Activity time series for CESM1 
LENS

Bold font indicates correlation values that are significant at the 99% confidence level

Correlation Values Between Linear Modes and ETC Activity Time Series

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Linear Mode 1 0.163 0.027 0.072 0.059 0.022 0.060 0.046 0.097 0.048 0.025 0.049 0.244
Linear Mode 2 0.411 0.485 0.435 0.304 0.232 0.279 0.113 0.161 0.215 0.193 0.436 0.390
Linear Mode 3 0.079 0.003 0.022 0.044 0.093 0.047 0.017 0.025 0.137 0.115 0.011 0.002
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Atlantic seaboard occurs near extratropical cyclone centers 
(Kunkel et al. 2012; Pfahl and Wernli 2012). Additionally, 
Pfahl and Sprenger (2016) showed that cyclone intensity 
and moisture availability scale well to precipitation amount, 
meaning that stronger cyclones and greater moisture content 
likely lead to increased precipitation totals. Looking back 
at our plots for the second linear mode, particularly during 
the late fall / winter periods, we see that this relationship is 
validated. It may seem surprising that the ETC Activity time 
series are generally not well correlated with the first linear 
mode, given the overall importance of ETCs in contributing 
to monthly precipitation totals. However, it is worth keep-
ing in mind that LOD modes represent orthogonal contri-
butions to monthly-averaged precipitation and as such can 
either reinforce or counteract one another. Effectively what 
we are seeing is that precipitation is a nonlinear combina-
tion of both moisture availability and dynamic uplift. Our 
first LOD mode appears to be primarily related to moisture 
availability in the Northeast, which is modulated primarily 
by southerly vapor transport. Our second LOD mode appears 
to be more strongly related to dynamic uplift, which is pri-
marily influenced by frontal activity. Strong positive values 
in both modes would be indicative of both a moistening of 
the Northeast and strong dynamic uplift, likely contributing 
to extremely wet conditions in such a month. With that said, 
opposite dynamic patterns are apparent in the PSL field, and 
seem to limit the co-occurrence of these conditions: the first 
mode suggests that optimal moisture transport occurs when 
PSL is enhanced off the Atlantic seaboard, while the second 
mode suggests that ETCs primarily occur in conjunction 
with negative PSL anomaly in this region.

Additionally, when testing alternative ETC tracking 
domains (see Sect. 6 of the Online Resource), we see that 
the strength of the correlation between the first linear mode 
and the ETC Activity time series is sensitive to the choice of 
domain (i.e., tracking ETCs in a particular domain can lead 
to more or less Atlantic seaboard vapor transport). While 
this sensitivity does exist regarding the first linear mode, 
the correlations with the second linear mode are insensitive 
to domain choice, such that the strongest correlations are 
between the ETC Activity time series and the second linear 
mode, regardless of domain choice. This further confirms 
our finding that the second linear mode is most strongly 
related to ETCs.

vi. A Link Between the Daily and Monthly Large-Scale 
Circulations

These three mechanisms discussed thus far for the gen-
eration of precipitation, localized vapor transport into the 
region from the Atlantic seaboard, reduced westerlies associ-
ated in part with extratropical cyclone activity, and remote 
vapor transport from the Gulf of Mexico (for the winter and 
fall periods), suggest a prominent role for certain LSMPs in 

creating favorable conditions by which these mechanisms 
can occur. Several studies (Bradbury et al. 2002b; A017; 
Suriano et al. 2018) have examined how the large-scale cir-
culation can influence the amount of precipitation received 
in the Northeast. For this region, a dominant troughing pat-
tern in the eastern United States is often responsible for 
overall precipitation, with trough strength having a seasonal 
dependence, and this pattern is accompanied by increased 
southerly ocean-enhanced vapor transport that extends along 
the Atlantic seaboard, increased easterly zonal flow, and 
strong surface lows into the northern portion of the region 
(A017; Agel et al. 2019). Additionally, the relative zonal 
position of the trough can act to modulate precipitation 
amounts, such that a more western (eastern) trough position 
is associated with greater (lower) monthly-averaged precipi-
tation (Bradbury et al. 2002b). This last point is reasonable, 
as the most active midlatitude storm tracks occur directly 
downstream of troughs (Lau 1988; Cai and Van den Dool 
1991), while areas just upstream of troughs are accompanied 
by surface anticyclones and generally have drier conditions 
(Harman 1991). Based on our above discussion, these pro-
cesses seem to be well-captured in part by our extracted 
linear orthogonal modes. Previous studies conducted at dif-
ferent timescales (daily for A017 and monthly for Bradbury 
et al. (2002b) and Suriano et al. (2018)) indicate a similar 
role for the large-scale circulation in influencing precipita-
tion totals. The clustering methods used by A017 on daily 
data (to study extreme precipitation) demonstrate in part that 
wintertime strength and positioning of troughs can modulate 
precipitation amounts. A similar conclusion is reached by 
Bradbury et al. (2002b) when correlating monthly trough 
position and strength indices to monthly winter precipita-
tion amounts, and Suriano et al. (2018) when examining 
monthly mid-tropospheric wave train patterns over North 
America. This likely suggests that monthly analyses such 
as ours, Bradbury et al. (2002b), and Suriano et al. (2018) 
are in fact representing more frequent occurrences of par-
ticular daily large-scale configurations. If a particular daily, 
large-scale pattern occurs more frequently in a month, it will 
have a higher representation in the monthly-averaged large-
scale pattern for that month. In the context of studies such as 
A017 that examine the daily LSMPs associated with extreme 
precipitation, this indicates that more frequent occurrences 
of high precipitation-causing LSMPs in a given month will 
likely lead to increased precipitation totals for that month. 
There is thus a direct link between daily large-scale patterns 
and monthly large-scale patterns and the variability associ-
ated with monthly precipitation totals. As such, our analysis 
suggests that, with regards to eastern United States trough 
strength and positioning, higher precipitation totals are more 
likely in a large-scale environment with an enhanced ridge 
in the North Atlantic, well-defined storm tracks with more 
frequent storms, and increased southerly moisture transport. 
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Conversely, we would expect drier conditions to be accom-
panied by a weaker ridge in the North Atlantic, weakly-
defined storm tracks with less frequent storms, and reduced 
southerly moisture transport.

4.2 � CESM1 LENS: multiple linear regression using 
linear modes to predict PRECT

As discussed in the methodology in Sect. 3, the linear modes 
for each month are used as predictors for the corresponding 
�̂0 for each month in a multiple linear regression (MLR) 
model. The R-squared value generated for each model, 
which accounts for the variance of the precipitation that can 
be explained by our predictors, provides us with an estima-
tion of how well our linear mode time series are able to 
predict �̂0 for each month. Following this approach, in all 
months, all of our linear mode time series are significant at 
the 99% confidence level (p-value < 0.01). R-squared values 
are listed in Table 1 and example scatterplots comparing 
observations to MLR predictions for January, May, July, and 
October are shown in Fig. 10.

Predictability is somewhat similar across all calendar 
months, as the R-squared values range from 0.54 to around 
0.65. Predictability is generally highest during the win-
ter (December, January, February, and March) and early 
summer (June and July) seasons, and displays a noticea-
ble decline for CESM1 LENS in April, May, August, and 
September. This raises the question as to what causes this 
decline in predictability? The decline can be explained by 
examining the seasonal cycle of precipitating days and pre-
cipitation intensity during these months. In April and May, 
there is a near peak in number of precipitating days, but a 
noticeable decline in precipitating intensity (A015). Mecha-
nisms and processes such as blocking episodes, localized 
convection, and backdoor cold fronts are active features of 
the late spring period, and can contribute to consecutive days 
of light precipitation (i.e., more precipitating days with less 
intensity) (Bosart et al. 1973). Additionally, the April–May 
time period usually sees a shifting of the jet stream to a more 
northerly position, which can reduce the number of extrat-
ropical storms that move northward along the Atlantic sea-
board (A015). This, combined with delayed warming due to 
cold ocean temperatures during the spring season (Trenberth 

Fig. 10   Scatterplots for CESM1 
LENS PRECT anomalies 
observations vs. MLR predic-
tions for January, May, July and 
October. Red line in each frame 
represents the 1:1 line, and 
value in bottom right corner of 
each frame indicates the mean 
precipitation for that month
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et al. 2003), can limit precipitation intensity. In August and 
September, we see an opposite seasonal cycle behavior 
from that of April and May, in that there is a decline in 
number of precipitating days, but a near peak in precipita-
tion intensity (A015). This indicates that some precipitation 
in August–September can tend to come from short-lived, 
intense systems such as mesoscale convective systems (Feng 
et al. 2019) or tropical cyclones (Barlow 2011).

Given the inherent interannual variability associated with 
the frequency and intensity of localized convection, fronts, 
and extratropical and tropical cyclones, and the infrequent 
and often spotty nature of MCSs, and the fact that the influ-
ence of these systems is not captured well in monthly data, 
this may explain in part the decline in linear predictability in 
the spring and summer periods. As discussed in A015, 50% 
of overall precipitation in the Northeast occurs as single-day 
events, and most extreme precipitation occurs over several 
multiday events. Additionally, Hawcroft et al. (2012) esti-
mates that roughly 85% of total precipitation in DJF comes 
from extratropical storms. Similarly, Catto et al. (2012) 
find that cold fronts and warm fronts account for 28% and 
29%, respectively, of midlatitude precipitation, with frontal 
activity accounting for 90% of extreme precipitation (Catto 
and Pfahl 2013). Given our analysis in this study, which is 
predicated on assessing monthly predictability of precipita-
tion, it can be difficult to fully account for the sub-monthly 
time-scale processes discussed in these previous studies, as 
monthly averaging of precipitation totals will tend to par-
tially dilute the impact of some high-precipitating events. 
We acknowledge this limitation, and would refer readers to 
the aforementioned studies for further discussion.

4.3 � Comparison between CESM1 LENS, ERA5, 
and NOAA‑CIRES‑DOE 20CRv3

For the methods presented in Sect. 3, it is important to 
test whether the identified modes are reasonably consist-
ent between the reanalysis products and CESM1 LENS. To 
validate this, the LOD method was applied to the data for 
ERA5, NOAA-CIRES-DOE 20CRv3 and CESM1 LENS. 
The results for each dataset are shown in Table 1 (CESM1 
LENS), Table 3 (ERA5), and Table 4 (NOAA-CIRES-DOE 
20CRv3). In terms of predictability, CESM1 LENS has a 
lower predictability range (determined by the R-squared val-
ues) of around 0.54–0.65, as compared to the higher predict-
ability range for ERA5 and NOAA-CIRES-DOE 20CRv3 
of around 0.58–0.88. This is perhaps not surprising, as the 
two reanalysis products have a smaller sample size than 
CESM1 LENS, and thus a greater level of variability can 
be captured with fewer modes. More importantly, the lower 
predictability range for CESM1 LENS likely results from the 
model’s internal variability with regards to representing the 
precipitation drivers. Overall, the maximum predictability 

afforded by the linear regression models for �̂0 across all 
months and datasets (determined by the R-squared values) 
is limited to a value of 0.88. We hypothesize that this cap on 
linear predictability may be because the regional precipita-
tion in the Northeast has inherent, complex variability (Ning 
and Bradley 2014) that cannot be fully captured by linear 
prediction methods.

Recall that in each iteration step of the LOD method, the 
selected time series of data (based on field and geographic 
location) is determined by absolute maximum correlation 
with the region-averaged precipitation anomaly time series. 
For each dataset in January, the first two iterations of the 
methodology select for IVTn along the Atlantic seaboard 
and U850 in western New York for CESM1 LENS and 
ERA5, and IVTn for NOAA-CIRES-DOE 20CRv3, respec-
tively. The third iteration selects for U850 in ERA5, IVTe in 
NOAA-CIRES-DOE 20CRv3, and IVTn in CESM1 LENS. 
The fourth iteration selects for U850 in ERA5, IVTn in 
NOAA-CIRES-DOE 20CRv3, and Z500 in CESM1 LENS. 
Although different fields and locations are selected for the 
latter modes, this does not necessarily indicate divergence in 
the meteorological patterns identified by these modes; it is 
instead largely indicative of strong correspondence between 
different fields and locations. By projecting these selected 
time series onto the 2D fields for each dataset, we can bet-
ter ascertain similarities in the large-scale features that are 
selected within each dataset. Figure 11 shows the projections 
onto the respective IVTn, Z500 and PRECT fields for each 
dataset for January (other fields and months are shown in 
the Online Resource). Visually, we see that there is good 
similarity across the three datasets for the correlation fields 
between the first two selected time series and the 2D fields. 
The visual similarity is reduced when examining the cor-
relation fields between the third selected time series and the 
2D fields. This similarity is quantitatively corroborated by 
calculating the spatial correlation in the domain of 25–60 
◦N and 60–100 ◦W between the three datasets (tabulated 
values for the first three linear orthogonal modes are shown 
in Sect. 2 of the Online Resource). This choice of domain 
allows us to account for how well the datasets compare with 
regards to capturing the large-scale features that influence 
precipitation in the Northeast. Generally, spatial correlation 
values are strongest during the fall and winter periods and 
for the first two linear orthogonal modes, with generally 
lower values during the spring and summer periods and for 
the third linear orthogonal mode. The fourth mode, however, 
exhibits very little visual or quantitative (not shown) similar-
ity across the three datasets, which suggests that this mode 
is perhaps related to the inherent variability within each 
respective dataset. Interestingly, for certain months, CESM1 
LENS compares better with ERA5, and for other months, 
CESM1 LENS compares better with NOAA-CIRES-DOE 
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20CRv3, which again highlights some of the variability that 
exists across the three datasets. These results demonstrate 
several key points: (1) our methodology applies reasonably 
well to both reanalysis products and a large ensemble model 
dataset, and (2) the lack of consistency after the third itera-
tion of the methodology amongst the three datasets suggests 

that the first three modes are the only modes that we can be 
reasonably confident in interpreting as drivers of precipita-
tion in the Northeast.

With regards to explained variance in January, ERA5 
produces an R-squared value of 0.81, NOAA-CIRES-DOE 
20CRv3 a value of 0.75, and CESM1 LENS a value of 0.64. 

Table 3   Same as Table 1, but for ERA5 data

LOD Results for ERA5 (1950–2018)

dp̂1 dp̂2 dp̂3 dp̂4 R-Squared Value

January IVTn(69 ◦W,40 ◦N)
0.7071
[0.60,0.82]
50.0%

U850(70 ◦W,46 ◦N)
0.4780
[0.37,0.59]
22.8%

U850(122 ◦E,25 ◦N)
0.2293
[0.12,0.34]
5.3%

U850(18 ◦E,13 ◦N)
0.1810
[0.07,0.29]
3.3%

0.814

February IVTn(71 ◦W,44 ◦N)
0.6525
[0.54,0.77]
42.6%

U850(103 ◦W,22 ◦N)
0.4276
[0.31,0.55]
18.3%

U850(71 ◦E,41 ◦N)
0.2937
[0.18,0.41]
8.6%

Z500(21 ◦W,13 ◦N)
0.2920
[0.18,0.41]
8.5%

0.780

March IVTn(66 ◦W,42 ◦N)
0.5266
[0.39,0.66]
27.7%

U850(70 ◦W,45 ◦N)
0.4798
[0.35,0.61]
23.0%

U850(91 ◦E,23 ◦N)
0.3873
[0.25,0.52]
15.0%

Q850(178 ◦W,15 ◦N)
0.2395
[0.11,0.37]
5.7%

0.715

April IVTn(69 ◦W,41 ◦N)
0.6635
[0.53,0.79]
44.0%

U850(66 ◦W,45 ◦N)
0.4085
[0.28,0.54]
16.7%

IVTn(93 ◦E,39 ◦N)
0.2636
[0.13,0.39]
6.9%

IVTe(48 ◦E,27 ◦N)
0.2266
[0.10,0.36]
5.1%

0.728

May IVTn(67 ◦W,43 ◦N)
0.7061
[0.60,0.81]
49.9%

IVTe(67 ◦W,35 ◦N)
0.4215
[0.32,0.53]
17.8%

PSL(69 ◦W,55 ◦N)
0.3042
[0.20,0.41]
9.3%

PSL(12 ◦W,15 ◦N)
0.2338
[0.13,0.34]
5.5%

0.823

June IVTn(65 ◦W,44 ◦N)
0.6028
[0.48,0.72]
36.3%

U850(71 ◦W,46 ◦N)
0.4446
[0.33,0.56]
20.0%

IVTe(71 ◦W,39 ◦N)
0.3621
[0.24,0.48]
13.1%

T2M(16 ◦E,29 ◦N)
0.2785
[0.16,0.40]
7.8%

0.770

July IVTn(101 ◦W,40 ◦N)
0.6113
[0.45,0.77]
37.4%

U850(71 ◦W,47 ◦N)
0.3823
[0.22,0.54]
14.6%

PSL(127 ◦E,35 ◦N)
0.2401
[0.08,0.40]
5.8%

0.578

August IVTn(71 ◦W,40 ◦N)
0.5323
[0.38,0.69]
28.3%

Q850(62 ◦E,21 ◦N)
0.4587
[0.31,0.61]
21.0%

T2M(177 ◦E,16 ◦N)
0.3569
[0.20,0.51]
12.7%

0.621

September IVTn(70 ◦W,39 ◦N
0.5453
[0.41,0.68]
29.7%

U850(70 ◦W,46 ◦N)
0.4816
[0.35,0.61]
23.2%

U850(151 ◦W,48 ◦N)
0.3329
[0.20,0.47]
11.1%

IVTe(143 ◦E,50 ◦N)
0.2831
[0.15,0.42]
8.0%

0.720

October IVTn(70 ◦W,40 ◦N)
0.6543
[0.54,0.77]
42.8%

U850(70 ◦W,47 ◦N)
0.4646
[0.35,0.58]
21.6%

Q850(124 ◦W,28 ◦N)
0.2977
[0.18,0.41]
8.9%

IVTn(100 ◦E ,9 ◦N)
0.2351
[0.12,0.35]
5.5%

0.788

November IVTn(71 ◦W,39 ◦N)
0.6535
[0.54,0.77]
42.7%

U850(70 ◦W,47 ◦N)
0.4781
[0.36,0.59]
22.8%

V850(93 ◦E,51 ◦N)
0.3045
[0.19,0.42]
9.3%

PSL(132 ◦E,26 ◦N)
0.2028
[0.09,0.32]
4.1%

0.789

December IVTn(69 ◦W,40 ◦N)
0.7119
[0.63,0.80]
51.1%

U850(69 ◦W,46 ◦N)
0.4741
[0.38,0.56]
22.3%

Z500(114 ◦W,37 ◦N)
0.3377
[0.24,0.42]
11.0%

IVTe(19 ◦E,23 ◦N)
0.2082
[0.10,0.27]
3.4%

0.877
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The higher R-squared values associated with the reanalysis 
products begs the question as to whether there is overfitting 
of the MLR model, due to the relatively small sample size of 
the reanalysis products. To determine whether overfitting is 
an issue here, a train/test procedure was used for the reanaly-
sis results. For a given �̂0 time series and the selected time 

series associated with each dataset, the data was partitioned, 
such that 80% of the data was used to train a linear model, 
and the remaining 20% was used to test the quality of the 
model. In order to get a robust result, 1000 random train/test 
samples were taken. The linear models were trained, and the 
test sets were used to see how well the models performed, as 

Table 4   Same as Table 1, but for NOAA-CIRES-DOE 20CRv3 data

LOD Results for NOAA-CIRES-DOE 20CRv3 (1950–2015)

dp̂1 dp̂2 dp̂3 dp̂4 R-Squared Value

January IVTn(71 ◦W,39 ◦N)
0.6280
[0.50,0.76]
39.4%

IVTn(104 ◦W,52 ◦N)
0.4260
[0.30,0.56]
18.2%

IVTe(110 ◦E,39 ◦N)
0.3259
[0.20,0.46]
10.6%

IVTn(126 ◦W ,2 ◦N)
0.2556
[0.13,0.38]
6.5%

0.747

February Q850(71 ◦W,41 ◦N)
0.6789
[0.55,0.81]
46.1%

T2M(92 ◦W,42 ◦N)
0.3864
[0.26,0.51]
14.9%

Q850(107 ◦W,72 ◦N)
0.2661
[0.14,0.39]
7.1%

Q850(89 ◦W,12 ◦N)
0.2651
[0.14,0.39]
7.0%

0.751

March IVTn(70 ◦W,39 ◦N)
0.5420
[0.39,0.70]
29.4%

T2M(88 ◦E,24 ◦N)
0.3691
[0.21,0.52]
13.6%

IVTn(79 ◦W ,4 ◦N)
0.3261
[0.17,0.48]
10.6%

IVTn(166 ◦E,74 ◦N)
0.3117
[0.16,0.47]
9.7%

0.633

April IVTn(69 ◦W,40 ◦N)
0.7049
[0.58,0.83]
50.0%

U850(67 ◦W,47 ◦N)
0.3342
[0.21,0.46]
11.2%

PSL(100 ◦E,21 ◦N)
0.2690
[0.14,0.40]
6.4%

Q850(82 ◦W,19 ◦N)
0.2533
[0.12,0.38]
5.2%

0.728

May IVTn(68 ◦W,45 ◦N)
0.6832
[0.57,0.80]
46.7%

U850(71 ◦W,36 ◦N)
0.4352
[0.32,0.55]
18.9%

T2M(140 ◦E,61 ◦N)
0.2966
[0.18,0.41]
8.8%

U850(100 ◦E,48 ◦N)
0.2270
[0.11,0.34]
5.2%

0.796

June IVTn(68 ◦W,42 ◦N)
0.6114
[0.48,0.74]
37.4%

IVTe(74 ◦W,37 ◦N)
0.4232
[0.29,0.56]
17.9%

V850(137 ◦E,11 ◦N)
0.3236
[0.19,0.46]
10.5%

U850(82 ◦E,44 ◦N)
0.2733
[0.14,0.41]
7.5%

0.732

July V850(73 ◦W,39 ◦N)
0.6938
[0.56,0.83]
48.1%

IVTe(8 ◦W,34 ◦N)
0.3812
[0.24,0.52]
14.5%

IVTn(109 ◦W,31 ◦N)
0.2713
[0.13,0.41]
7.4%

0.700

August IVTn(73 ◦W,39 ◦N)
0.6064
[0.46,0.77]
36.8%

IVTn(22 ◦E,40 ◦N)
0.4004
[0.25,0.55]
16.0%

V850(67 ◦E,32 ◦N)
0.3562
[0.21,0.51]
12.7%

0.655

September V850(71 ◦W,40 ◦N)
0.5827
[0.45,0.72]
34.0%

U850(69 ◦W,48 ◦N)
0.4522
[0.32,0.59]
20.5%

Q850(73 ◦W,40 ◦N)
0.3115
[0.18,0.45]
9.7%

Q850(141 ◦E,12 ◦N)
0.2913
[0.16,0.43]
8.5%

0.726

October PSL(75 ◦W,38 ◦N)
0.6730
[0.54,0.81]
45.3%

IVTe(131 ◦E ,9 ◦N)
0.3473
[0.21,0.48]
12.1%

PSL(58 ◦W,39 ◦N)
0.2903
[0.16,0.43]
8.4%

U850(169 ◦W,39 ◦S)
0.2503
[0.12,0.39]
6.3%

0.720

November IVTn(74 ◦W,35 ◦N)
0.5516
[0.41,0.70]
30.4%

IVTe(76 ◦W,48 ◦N)
0.3913
[0.25,0.54]
15.3%

T2M(118 ◦E,46 ◦N)
0.3471
[0.20,0.49]
12.0%

U850(2 ◦E ,2 ◦S)
0.3219
[0.18,0.47]
10.4%

0.682

December V850(69 ◦W,41 ◦N)
0.6922
[0.58,0.81]
47.9%

Z500(123 ◦W,46 ◦N)
0.4378
[0.32,0.55]
19.2%

IVTn(98 ◦E,40 ◦N)
0.2738
[0.16,0.39]
7.5%

IVTe(86 ◦W,44 ◦N)
0.2334
[0.12,0.35]
5.4%

0.800
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determined by the R-squared values from the 1000 samples. 
Nearly 40% of samples predict a R-squared value compara-
ble to the R-squared value determined when all of the dataset 
is used. This seems to indicate that there is not an overfit-
ting issue for the reanalysis datasets, and the increased level 
of predictability given by reanalysis products as compared 
to CESM1 LENS may be simply due to the difference in 
sample size and the overall methods used to generate the 
respective datasets.

Another question is whether the use of single ensemble 
members or smaller subsets of ensemble members (than 
using all 35) produce similar predictability and LOD modes 
to reanalysis, or are the shortcomings of the model output 
mitigated in part by using most of the ensemble members? 
To address this question, we implement the LOD method 
on single ensemble members and smaller non-overlapping 
groups of five and eleven ensemble members, respectively, 
and calculate the spatial correlation of the resulting LOD 
fields for Z500, IVTn, and PRECT compared to those of 
ERA5 in the domain of 25–60 ◦N and 60–100 ◦W . For indi-
vidual ensemble members and some groupings of five and 
eleven ensemble members, R-squared values are comparable 
to that of ERA5, in the range of 0.65–0.95; however, the 
spatial correlation values are either small or negative for 
some of these, indicating that the LOD modes are not being 

captured well. Example scatterplot results for this approach 
in January are shown in Fig. 12. For all three fields and for 
each of the linear modes, there is a broad range of spatial 
correlation values when considering individual ensemble 
members. This spread is reduced, and spatial correlation 
values are improved, as we include more ensemble members, 
with the best spatial correlation generally obtained when 
all 35 ensemble members are considered. This result high-
lights the usefulness and necessity of considering most of 
the ensemble members when working with CESM1 LENS. 
If one were to implement LOD on a single ensemble mem-
ber at random, it could potentially lead to results that are 
unrepresentative of the larger ensemble. Given that there is 
good similarity between the results for the reanalysis prod-
ucts and CESM1 LENS, it is thus reasonable to suggest that 
use of the larger sample size of CESM1 LENS is a compro-
mise between accurately capturing the LOD modes versus 
reduced predictability in terms of R-squared values relative 
to the reanalysis products.

Overall, the consistency of the results across the datasets 
when our methodology is implemented provides confidence 
in its use. And again, the lack of consistency across the 
datasets once the third mode is extracted suggests that only 
three important modes are robust in our regional analysis. 
These findings demonstrate that the CESM1 LENS dataset 

Fig. 11   Comparison for January between CESM1 LENS, ERA5, and NOAA-CIRES-DOE 20CRv3 for the projection of the first four linear 
orthogonal modes onto the respective IVTn, Z500, and PRECT fields. Contour shading indicates significance at the 95% confidence level
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approximates real-word observations reasonably well when 
a large sample size is considered, and thus can be useful for 
additional analyses related to understanding future precipita-
tion conditions.

4.4 � CESM1 LENS: multiple linear regression using 
climate indices to predict linear modes

As discussed in Ning and Bradley (2014), several modes 
of climate variability have important influences across the 

Northeast, and these influences manifest in certain LSMPs 
that act to suppress or enhance precipitation. For example, 
during years with high (above one standard deviation) NAO, 
there are significant high sea-level pressure anomalies over 
the northern part of the northeast United States, which can 
act to block winter storms from passing through and thus 
reduce wintertime precipitation (Ning et al. 2012b). Previ-
ous studies have also shown that the PNA pattern varies 
considerably with differences in tropical Pacific SST anoma-
lies (Straus and Shukla 2002), and the PNA can, in turn, 

Fig. 12   Scatterplots of spatial correlation values between ERA5 and 
groups of 1, 5, 11, and all 35 ensemble members, respectively, from 
CESM1 LENS associated with January plots for Z500 (first column), 

IVTn (second column), and PRECT (third column). Rows in each 
column represent the first, second, and third linear modes, respec-
tively
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influence conditions over the Northeast. Overall, the three 
teleconnection patterns discussed above correspond to dif-
ferent placement and orientation of high pressure over North 
America, which can lead to different moisture transport pat-
terns over the Northeast (Straus and Shukla 2000; 2002).

Following the methodology discussed in Sect. 3.3, we can 
assess how well our linear modes and precipitation data can 
be predicted by the linear combination (MLR) of some of 
these teleconnection patterns. Generally speaking, the NAO, 
PNA, and ENSO serve as statistically significant predictors 
(p-value < 0.01) in our MLR model. The predictability of 
our linear modes by these teleconnection patterns is given 
in the last column of Table 5, where the three rows for each 
month in that column represent the MLR R-squared value 
for the first, second and third linear modes, respectively. Our 
discussion here focuses on the winter and late fall periods, 
as these periods generally have the highest R-squared values 
from the MLR. This is perhaps not surprising, as precipita-
tion variability in the late spring and summer seasons is 
less significantly related to the large-scale circulation than 
during the fall and winter periods (Ning et al. 2012a). In 
December, January, February, March, October, and Novem-
ber, the second and third modes are reasonably predicted by 
some of the teleconnection patterns (Table 5). The result for 
March is not surprising, as winter conditions can persist into 
March over this region (Kunkel and Angel 1999; Bradbury 
et al. 2003). Recall that the second linear mode during the 
winter period is associated with extratropical cyclone activ-
ity south of the Northeast, and the third mode is associated 
with vapor transport from the Gulf of Mexico. Our results 
here are in agreement with those of previous studies such 
as Straus and Shukla (2002), Ning and Bradley (2014), and 
Risser et al. (2021) regarding the role of the NAO, PNA, and 
ENSO in influencing wintertime precipitation totals over 
the Northeast by modulating cyclone development and the 
3D circulation.

The teleconnection patterns are not good predictors of ̂�0 
(second column of Table 5), as R-squared values are gener-
ally small. This result is in agreement with previous stud-
ies such as Bradbury et al. (2002a) and Archambault et al. 
(2008) that did not find robust direct correlations between 
total winter precipitation and individual teleconnection pat-
terns. As we have shown, different teleconnection patterns 
can have important influences on different precipitation 
modes that are decomposed from the total precipitation field. 
Additionally, it appears that many of these teleconnection 
patterns act only to influence the 3D circulation (i.e., zonal 
and meridional flow, trough/ridge location, etc..) and not 
necessarily the moisture processes that are most important 
for precipitation development. As discussed earlier in Sect. 4 
and reiterated here, these teleconnection patterns seem to 
manifest themselves via the large-scale circulation. This is 
confirmed by including the indices for the teleconnection 

patterns as predictors along with the LOD selected time 
series in the MLR models to predict �̂0 (third column of 
Table 5). The addition of the climate modes does not lead 
to a substantial increase in the predictability of �̂0 (this 
predictability is given in the first column of Table 5, using 
the first three linear orthogonal modes), and this reinforces 
the point that their influence is already encapsulated in our 
extracted modes. This point is further reinforced by generat-
ing composites for the Z500 field associated with ± 1 stand-
ard deviation of our linear orthogonal mode time series, and 
then comparing those composites with corresponding ones 
associated with ± 1 standard deviation for the time series for 
NAO, Nino3.4, and PNA. This comparison is quantified by 
calculating the spatial correlation across the composites in 
the domain of 25–60 ◦ N and 60–100 ◦ W (tabulated spatial 
correlation values given in Sect. 3 of the Online Resource). 
Focusing on the winter period (December–March), there is 
excellent correlation between the linear orthogonal mode 
composites and the climate mode composites (magnitude of 
correlation values in the range of around 0.60–0.90). Gener-
ally, it seems as though the teleconnection patterns drive the 
large-scale circulation in which our linear orthogonal modes 
are embedded, but the circulation itself does not necessarily 
drive precipitation. Instead, the large-scale circulation acts to 
generate environments that are conducive (or not conducive) 
for precipitation to occur.

5 � Summary and discussion

The present study aims to build upon the existing literature 
related to assessing the large-scale drivers associated with 
monthly precipitation variability in the Northeast via the use 
of a novel linear orthogonal decomposition method.

The results of our analysis are summarized in part here:

1)	 During the winter (Figs. 1, 2, and 3) and fall periods 
(available in the Online Resource), the dominant, large-
scale atmospheric drivers of monthly precipitation 
variability in the Northeast are integrated vapor trans-
port northward along the Atlantic seaboard (first linear 
mode), extratropical cyclone activity (second linear 
mode) and associated frontal systems, and integrated 
vapor transport from the Gulf of Mexico (third linear 
mode). In the summer season (Figs. 7 and 8), while 
vapor transport along the Atlantic seaboard is still 
important, extratropical cyclone activity is reduced, and 
the third linear mode is difficult to physically interpret, 
although we believe it may be related to MCSs. As con-
structed, these modes are linearly independent from one 
another, and so multiple such modes over a given month 
can contribute to precipitation totals for that month.
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2)	 MLR models, based on using the LOD modes as pre-
dictors, are able to predict monthly, region-averaged 
precipitation totals reasonably well, with R-squared 
values in the range of around 0.54 to 0.65 for CESM1 
LENS (Table 1), and higher values in the range of 0.58 

to 0.88 for the ERA5 (Table 3) and NOAA-CIRES-DOE 
20CRv3 (Table 4) reanalysis products. Predictability is 
generally best during the late fall / winter and early to 
mid-summer periods, and is generally lowest during 
April–May and August–September for CESM1 LENS, 

Table 5   Multiple linear regression results related to teleconnection patterns for CESM1 LENS

First column is the predictability of precipitation using the first three linear modes from the linear orthogonal decomposition method only. Sec-
ond column is the predictability of precipitation using only the teleconnection patterns. Third column is the combined predictability of precipi-
tation using both the first three linear modes from the linear orthogonal decomposition method and the teleconnection patterns. Fourth column 
is the predictability of the linear modes from the linear orthogonal decomposition method using only the teleconnection patterns. Rows in the 
fourth column are the predictability (R-squared value) for the first, second, and third linear modes, respectively. Listed R-squared values reflect 
significance at the 99% confidence level

CESM1 LENS MLR Results Including Teleconnection Patterns

Predictability w/ LOD 
Modes

Predictability w/ Telecon-
nection Patterns

Predictability w/ LOD Modes + Tel-
econnection Patterns

Predictability of LOD Modes 
Using Teleconnection Patterns

January 0.624 0.109 0.635 0.116
0.160
0.117

February 0.628 0.087 0.630 0.023
0.253
0.332

March 0.619 0.071 0.624 0.023
0.267
0.330

April 0.580 0.054 0.591 0.015
0.117
0.132

May 0.600 0.043 0.602 0.025
0.088
0.036

June 0.643 0.019 0.646 0.013
0.059
0.013

July 0.646 0.053 0.650 0.032
0.011
0.104

August 0.565 0.035 0.569 0.016
0.033
0.216

September 0.527 0.010 0.532 0.048
0.041
0.027

October 0.603 0.032 0.607 0.049
0.030
0.174

November 0.572 0.055 0.577 0.024
0.193
0.231

December 0.599 0.062 0.607 0.079
0.163
0.231
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due in part to the seasonal cycle of precipitation in the 
region and the diluted influence of sub-monthly time 
scale systems in the monthly averaging. Overall, the cap 
on linear predictability may be related to the inherent, 
complex variability of regional precipitation that cannot 
be fully encapsulated by linear prediction methods.

3)	 CESM1 LENS compares reasonably well with reanal-
ysis products both in terms of their linear orthogonal 
modes, and also in the projection of those modes onto 
the atmospheric fields we have considered (Fig. 11). 
The first three linear orthogonal modes (or two, in the 
summer period) are very similar between the three data-
sets we have analyzed, with significant divergence only 
occurring with the fourth linear mode across all three 
datasets. With the inherent variability associated with 
the fourth linear mode across all three datasets, we con-
clude that the first three linear modes are likely the most 
important for understanding the processes associated 
with monthly precipitation in the Northeast.

4)	 The large-scale atmospheric drivers of Northeast pre-
cipitation, particularly those associated with the second 
and third linear orthogonal modes, are linked in some 
capacity with the NAO, ENSO, and PNA (Table 5). We 
can conclude that the mechanisms by which these tel-
econnection patterns influence monthly precipitation 
totals over the region are through modification of the 
intensity and frequency of the linear orthogonal modes. 
That is, the teleconnection patterns influence the linear 
orthogonal modes, which in turn influence the monthly 
precipitation totals.

Our results are in general agreement with the existing 
literature related to understanding monthly precipitation 
variability in the Northeast. While we have not specifically 
examined smaller-scale phenomena (besides ETCs) that 
can contribute to this variability, our linear modes indicate 
that the modulation of precipitation totals in the region are 
directly linked with the large-scale circulation. In favorable 
large-scale environments, phenomena such as ETCs, MCSs, 
and localized convection are likely to occur more frequently, 
resulting in greater monthly precipitation totals. By contrast, 
if the large-scale environment is not conducive to the devel-
opment of these systems, then monthly precipitation totals 
on average would be reduced. In the context of the drivers 
within these large-scale environments, as the analysis of our 
linear modes indicates, there seems to be some seasonal dif-
ferences in the manifestation of certain drivers. While the 
three linear modes for winter and fall are robust and are eas-
ily interpreted physically by examining our figures, it is more 
difficult to gain physical insight into the processes associated 
with the third linear mode in the spring and summer peri-
ods. We hypothesize that these seasonal differences may be 
due in part to the difference in jet stream behavior, as the 

jet stream is stronger and more easily identified in the cold 
seasons, and as such the large-scale circulation is also more 
clearly defined. Additionally, these seasonal differences 
occur across the three datasets we have analyzed, thus rul-
ing out any product-specific deficiency. We have proposed 
several mechanisms to explain this third mode in the spring 
and summer periods, but since this mode contributes little 
to the precipitation variability in these seasons, and tends to 
vary in structure between the data products, it is unclear if 
it conveys any physical meaning about the upstream drivers 
of monthly precipitation.

The findings presented here also provide several oppor-
tunities for further work. The applicability of our linear 
orthogonal decomposition technique to both reanalysis data 
and model output provides confidence in the reliability of 
CESM1 LENS in replicating observations. Given this reli-
ability, CESM1 LENS data can be used, and our analysis 
can be extended, to examine precipitation characteristics 
and the associated large-scale drivers in the Northeast in the 
near-future and far-future. Such a study could be a valuable 
resource for future, regional water management practices in 
the face of ongoing anthropogenic climate change. Further-
more, our methodology can be reasonably applied to other 
regions of the world as well. Doing so can provide insight 
into the precipitation characteristics of those regions, as well 
as the LSMPs that modulate those characteristics. Finally, 
as touched on briefly in our discussion, our analysis in this 
study is linked to linear predictability—it is nonetheless 
relevant to understand how much additional predictability 
could be afforded if a nonlinear approach, such as a machine 
learning model, were employed.

Appendix A

Linear orthogonal decomposition (LOD)

We begin with local precipitation time series vector p with 
components pk = p(tk ) and associated 2D field time series �i

(�j ) with components �i(tk,�j ). Here tk and �j denote temporal 
and spatial coordinates, respectively. In this study, time is 
discretized at the monthly time scale, but this method can 
be applied to other time scales.

The first step involves removal of a reference field (here 
taken to be the climatological mean) along the time axis in 
both precipitation and 2D fields:

If an obvious and undesired trend is present in the time 
series, it can be removed by using a time-dependent lin-
ear field instead. Here we can interpret the quantity �̂n 
as the component of the precipitation time series that is 

�̂0 = � − E
[
�
]
, �̂i(tk, �j) = �i(Xj) − E[�i(Xj)]
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unpredicted at stage n (this is the whole precipitation time 
series at stage 0). To proceed, we perform an iterative pro-
cess analogous to a Gram-Schmidt decomposition. Specifi-
cally, we iterate over the following three steps (n = 1,…,N), 
where N is the termination point:

1.	 Calculate correlation between �̂n and �̂i(�j ) at each point 
(the value of the correlation field should be between -1 
and 1):

	   cn(�j)=
�̂n−1⋅�̂i(�j)

StdDev[�̂n−1]⋅StdDev[�̂i(�j)]

2.	 Identify the point of maximum absolute correlation xn in 
field in . Define the predicted component of the precipita-
tion field from this point as:

	   ��̂n = cn(�n)[�̂in (�
n) −

∑n−1

m=1

�̂in (�
n)⋅��̂m

��̂m⋅��̂m
��̂m].

	   Note that ��̂n here is multiplied by the correlation by 
convention.

3.	 Calculate the remaining unpredicted component of the 
precipitation:

�̂n = �̂0 −
∑n

m=1

�̂0⋅��̂m

��̂m⋅��̂m
��̂m = �̂n−1 −

�̂0⋅��̂n

��̂n⋅��̂n
��̂n

As this is an orthogonal decomposition, the following 
properties should hold for each step of the process:

(a)	 E[��̂n] = 0 and E[�̂n] = 0
(b)	 ��̂m ⋅ ��̂n = 0 for n ≠ m
(c)	 �̂n ⋅ ��̂m = 0 for m < n
(c)	 ||�̂m||2 > ||�̂n||2 for m < n

By orthogonality of ��̂n and using E[��̂n] = 0, we have.
Var[

∑n

m=1

�̂0⋅��̂m

��̂m⋅��̂m
��̂m]=

∑n

m=1

�
�̂0⋅��̂m

��̂m⋅��̂m

�2

Var[��̂m]

=
1

N−1

∑n

m=1

(�̂
0
⋅��̂m)

2

��̂m⋅��̂m

where N is the number of elements in ��̂m.
Using E[��̂n] = 0, we have.
Var[�̂0]= 1

N−1
(�̂0 ⋅ �̂0)

Combining these equations, the total fraction of vari-
ance (fov) explained at stage n of the process is given by:

Fov=
∑n

m=1
fovm where fovm =

(�̂
0
⋅��̂m)

2

(�̂0⋅�̂0)(��̂m⋅��̂m)

The total fraction of variance is equal to the R-squared 
provided by an MLR model acting either on time series 
{ ��̂1,…,��̂n } or { ̂�i1(�

1),…, �̂in(�
n)}.
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