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ABSTRACT

Extreme precipitation events have major societal impacts. These events are rare and can have small spatial

scale, making statistical analysis difficult; both factors are mitigated by combining events over a region. A

methodology is presented to objectively define ‘‘coherent’’ regions wherein data points havematching annual

cycles. Regions are found by training self-organizing maps (SOMs) on the annual cycle of precipitation for

each grid point across the contiguous United States (CONUS). Using the annual cycle for our intended

application minimizes problems caused by consecutive dry periods and localized extreme events. Multiple

criteria are applied to identify useful numbers of regions for our future application. Criteria assess these

properties for each region: having many more events than experienced by a single grid point, good con-

nectedness and compactness, and robustness to changing the number of regions. Our methodology is ap-

plicable across datasets and is tested here on both reanalysis and gridded observational data. Precipitation

regions obtained align with large-scale geographical features and are readily interpretable. Useful numbers of

regions balance two conflicting preferences: larger regions containmore events and thereby havemore robust

statistics, but more compact regions allow weather patterns associated with extreme events to be aggregated

with confidence. For 6-h precipitation, 12–15 regions over the CONUS optimize our metrics. The regions

obtained are compared against two existing region archetypes. For example, a popular set of regions, based on

nine groups of states, has less coherent regions than defining the same number of regions with our SOM

methodology.

1. Introduction

One of the fundamental problems in researching ex-

treme events is finding a large enough sample size to

make the statistics robust. A common way to build

sample size is to aggregate events within some geo-

graphic area (e.g., Kunkel et al. 1993; Karl and Knight

1998; Grotjahn and Faure 2008; Kunkel et al. 2012).

Aggregation can be effective for precipitation extremes

because precipitation varies across smaller scales than

other atmospheric variables (e.g., temperature and

pressure) (Hewitson and Crane 2005).

Other climate regionalizations have been made be-

fore, most notably in Karl and Knight (1998), Kottek

et al. (2006), and Bukovsky (2011). Previous region-

alizations are not suitable to aggregating extreme

precipitation events for one or more reasons: the re-

gions are too large, the regions are too discontinuous

over mountainous regions, the regions are partly de-

fined from elevation, the regions are defined from

combinations of meteorological variables, or the re-

gions are partially based on local vegetation. In addi-

tion, these regionalizations are created or modified by

subjective factors like consensus among researchers or

intuition. Our method uses precipitation solely and the

shape and number of the regions result from pre-

defined criteria.

This paper presents an objective way to select geo-

graphic areas for grouping extreme precipitation events

by training self-organizing maps (SOMs) on the nor-

malized annual cycle of precipitation. Therefore, each

region contains points having similar seasonal cycle. The

seasonal cycle is normalized so that the regions are not

influenced by the size of the total annual precipitation.
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Removing the total allows us to find larger-scale pat-

terns and not have SOM-based regions that merely show

topographic elevation or proximity to the ocean. Sea-

sonality is emphasized because extreme precipitation

events and the meteorological drivers behind them can

be mainly seasonal (Kunkel et al. 2012). In some areas

wintertime precipitation is almost exclusively caused by

frontal systemswhereas other areas receivemost of their

summertime precipitation from convective systems.

Training a SOM on the normalized annual cycle of

precipitation will therefore more likely contain similar

extreme precipitation events occurring at different pla-

ces in the region. The paper is organized as follows.

Section 2 details the different datasets used. Section 3

describes the methodology. Section 4 tests the ap-

proaches. Sections 5 and 6 apply the criteria and com-

pare reanalyses. Section 7 compares the maps obtained

by ourmethod to other regionalizations in the literature,

and concluding remarks are provided in section 8.

2. Data

Climate Forecast System Reanalysis (CFSR) pre-

cipitation data (Saha et al. 2010a) are emphasized for

training the self-organizing map. CFSR uses the Climate

Forecast System model (CFS) data to generate a

continuous best estimate of the state of the ocean–

atmosphere system (Saha et al. 2010b). CFSR is cho-

sen since it has all the fields we need to create algorithms

(in later work) that diagnose the meteorological drivers

of precipitation. The CFSR temporal resolution of four

times a day will allow our diagnostics to capture the

individual process(es) driving each extreme event.

CFSR incorporates hourly input data. The CFS model

has T382, or approximately 35-km horizontal resolution,

using a sigma-pressure hybrid vertical coordinate with

64 levels and a top pressure of ;0.266 hPa. The CFSR

has 0.58 resolution in both latitude and longitude and

temporal resolution of 6 h. Our time period is 1 January

1979–31 December 2010.

As a cross check we also apply ourmethodology to the

Climate Prediction Center’s (CPC) unified precipitation

data (Chen et al. 2008a). The CPC data are based on a

rain gauge network spanning the conterminous United

States (CONUS) and have been interpolated to a

latitude–longitude grid using an optimal interpolation

objective analysis technique as in Xie et al. (2007) and

Chen et al. (2008b). These gridded precipitation data

have a resolution of 0.258 in both latitude and longi-

tude and are recorded daily as an accumulation from

1200 UTC of the day before to 1200 UTC of the cur-

rent day. We use data from 1 January 1950 through

31 December 2018.

3. Methodology

The goal is to train a SOM to divide the CONUS into

regions with similar precipitation characteristics. These

regions are called ‘‘coherent regions’’ in this report.

Because extreme precipitation is likely seasonal, we use

the annual cycle of precipitation to create our regions.

SOMs are a type of artificial neural network first in-

troduced by Kohonen (1982). SOMs utilize a competi-

tive and unsupervised learning algorithm to produce a

lower-dimensional representation of the input data; in

this case almost 6000 average annual cycles, one for

each grid point, are grouped into a much more man-

ageable and representative ;15 average annual cycles,

one for each region. Each region’s annual cycle is the

average of the average annual cycle of each grid point

within that region. Another feature is that the ;15

representative annual cycles are ordered by similarity,

that is, the annual cycles of region K 5 1 and of the

highest K value region (e.g., K ; 15) are the most dis-

similar. This featuremakes it simple to see the full range

of patterns extracted from the input data. It should be

noted that the two most dissimilar regions are often

adjacent, as seen in Figs. 1a–f. This indicates that two

decidedly different regimes abut one another. Where

this occurs with a jagged or messy border suggests that,

perhaps due to interannual variations, the boundary is

uncertain. Precipitation has a highly skewed distribu-

tion, which makes any measure of the annual cycle very

noisy. It is therefore useful to take the cube root of

precipitation before creating the measure of the annual

cycle as that operation is observed to transform pre-

cipitation data to an approximately normal distribution

(Stidd 1953). Processes are described in the next section

that were discarded (sections 4a–c) in favor of using the

cube root, which will be discussed further in section 4d.

All leap days are then removed, and a long-term daily

mean (LTDM) is created by averaging all the 1 January

data from every year, the 2 January data from every

year, and so on. This is done for each grid point in-

dividually so the end result is a time series of the cube

root of precipitation with 365 values for each grid point.

We care most about the timing of precipitation and

want the SOM to be able to easily compare climato-

logically wet and dry areas. Because of these concerns,

each time series is adjusted so that the range of the

data is from 0 to 1. The procedure is to subtract the

minimum value of each time series from every value in

the time series and divide the result by the new maxi-

mum of that time series. This normalized annual cycle

of precipitation will henceforth be referred to as the

LTDM-n. The LTDM-n allows the methodology to

compare the occurrence of the wettest days at different
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locations instead of simply creating regions based on

annual rainfall amount.

Without some form of LTDM it is very common to get

long strings of zeros in a daily precipitation accumula-

tion time series. These strings create a false similarity

between distant, climatologically dry, areas. Taking an

LTDM reduces the chances of zero values occurring

and separates climatologically dry areas better. An

added benefit is that a representative seasonal cycle will

be created for each region. Future applications may

desire to focus on a specific season (e.g., winter in Cal-

ifornia) and having seasonality built into the SOMs is

advantageous.

To test that the regions created by the SOM are sta-

tistically distinguishable, a test based upon the ‘‘false

discovery rate’’ (FDR) is used (Johnson 2013). This test

checks if the LTDM-n at each grid point in a region is

significantly different than the LTDM-n in every other

region at the 5% level. This method provides a useful

upper bound on the number of regions we can find

across the CONUS. This upper bound is 32 regions

for the CFSR data and 63 regions for the CPC data. To

find an ‘‘optimal’’ number of regions (KB) rather than

merely rely on the upper bound presented in (Johnson

2013), five metrics of four criteria are considered: con-

nectedness, robustness, compactness, and the number of

extreme events in each region during the record.

We prefer that each SOM-based region be contigu-

ous, a property we label connectedness. Connectedness

has two elements. First, we want to minimize the num-

ber of separate areas that comprise each SOM region.

Second, we prefer each SOM region to be mainly a

single larger area and that any other areas be individu-

ally and collectively small. To measure this connect-

edness attribute, two metrics were designed. The first

counts the number of isolated areas that belong to each

region, where an isolated area is a continuous group of

grid points from one single region entirely surrounded

by grid points from other regions. This metric for the

mean number of isolated areas composing the regions

FIG. 1. SOM regions created from (a) the first six harmonics of the long-termdailymean (LTDM) of precipitation

at each grid point,K5 9; (b) the LTDMof precipitation, adjusted to vary from 0 to 1, at each grid point whereK5 9;

and (c) the LTDMof the cube root of precipitation, adjusted to vary from0 to 1, at each grid point whereK5 9. (d)As

in (a), butK5 15. (e) As in (b), butK5 15. (f) As in (c), butK5 15. IAC is themean value of the isolated area count,

and MAF is the mean value of the minor areas fraction. Smaller values are preferable for both IAC and MAF.
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will be called the isolated area count (IAC). This aver-

age number of separate areas per region varies from a

minimum of 1 to a maximum of about 10 in CFSR data

and about 30 in CPC data. The second measure of

connectedness recognizes that a region broken into

several small disconnected areas and one large con-

nected area is preferable to a region broken into ap-

proximately equally sized disconnected areas. To this

end the second metric computes, for each region, the

ratio of grid points not belonging to the largest isolated

area to the region’s total number of grid points. This

metric of the fraction of areas in the region that are not

part of the largest area will be called the minor areas

fraction (MAF). The CONUS average of the MAF is

used.We specify that no regionmay have connectedness

metrics above 6 and 0.25, respectively, for the two

metrics discussed above.

Another criterion is robustness, which refers to how

much each SOM region boundary changes when the

number of SOM regions allowed is incremented; the less

change to existing region boundaries by the addition of

another region the better. To measure this quantity, for

each grid point we count the other grid points that are in

the same region as the particular grid point for a given

value ofK. If, forK1 1 regions, any of the counted grid

points are no longer in the same region as the particular

grid point, we discard them from our count and divide

the reduced count by the original count (for K regions).

Even if the region were to grow in size, we are only

considering grid points that were part of the original

count. Hence, 1 is the largest this metric can be. It is

expected that regions will shrinkwhenK is increased but

it is possible for a region to grow in size. If a particular

region grows in size from a map withK regions to a map

with K 1 1 regions then robustness can also be one for

grid points in that region. However, one or more adja-

cent regions will have shrunk, thereby lowering the ro-

bustness scores of their grid points. The map average of

these ratios (i.e., the average of the ratios at all the grid

points) is between 0 and 1. Amap average near 1 is ideal,

with lower values indicating that a map withK regions is

not as robust. We specify that a map average ratio

be $0.65 for the map to be considered adequately

robust.

The last criterion, compactness, is intended to foster

our eventual goal of compositing events within each

region. Long and thin regions are a hindrance to com-

positing because when a region extends too far in one

direction, lining up the origins of particular events be-

comes problematic. In each region we calculate the

nondimensional ratio (or compactness ratio) of the

square root of the total area encompassing the largest

connected group of grid points divided by the perimeter

of that area to evaluate how compact each region is. We

specify that no region may have a compactness ratio

below 0.075. For reference a perfectly circular region

would have a compactness ratio of;0.28. The set ofK5
15 regions has a median compactness ratio of 0.14.

Thresholds introduced are not general. After looking

at maps for K values of 2–63 we subjectively decided on

these thresholds of 6 and 0.25 for connectedness, 0.65 for

robustness, and 0.075 for compactness. The thresholds

are a way of establishing minimal qualifications for each

criterion.

4. Approaches considered to constrain the annual
cycle

This study uses the normalized LTDM of the cube

root of precipitation, but it is useful to see other ap-

proaches considered and rejected. Different methods

can find an annual cycle. These include different types of

harmonic analysis where more or fewer harmonics are

retained depending on the time scale of interest. One

could also use a measure of central tendency for each

day of the year across all years in the data. Four mea-

sures of the annual cycle of precipitation are discussed.

One notes that very robust, connected, and compact

regions can be made simply by training a SOM on the

full, unprocessed, daily precipitation record at each grid

point. For our purposes there are two issues with this

method of regionalization. First, using the full record

does not emphasize seasonality, which is undesirable for

the reasons discussed above. Second, this method

yields a precipitation time series for each region that is

32 years long and much less readily interpretable than a

measure of the annual cycle. A figure of the regions

produced by training a SOM on the full, unprocessed,

daily precipitation records is available in the online

supplemental material.

a. Harmonic LTDM to capture the annual cycle

Because we are most interested in what time of year

precipitation tends to occur in a specific area, the logical

first step in creating SOM-based precipitation regions is

to train the SOM on the annual cycle of precipitation.

Prior studies of the annual cycle of temperature

(Grotjahn 2011; Grotjahn and Zhang 2017) found that a

limited set of harmonics captures a smoothly varying

LTDM. Harmonics work because the day-to-day vari-

ability remains quite large even when averaging 60 years

of data. Given their success in creating a smoothly

varying annual cycle by retaining only the first six

harmonics of the LTDM of temperature, wind, and ge-

opotential height, we tested a similar filtering on pre-

cipitation. This filtering creates a smoothly varying
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annual cycle of precipitation, here called the harmonic

long-term daily mean (HLTDM). Choosing the number

of harmonics to retain in order to adequately represent

the annual cycle of precipitation is unclear. InWang and

LinHo (2002) 12 harmonics are used to capture the onset

of the Asian monsoon, but in an earlier paper (Wang

1994) only 4 harmonics are used. The older paper was

not concerned with the precise timing of the onset, but

rather with how the intensity changes from year to year.

The newer paper sought to identify the time of monsoon

onset, which required a more detailed representation of

the annual cycle. To choose the number of harmonics

here, we observed the average difference between the

LTDM and the HLTDM at each grid point versus how

many harmonics we kept. This analysis led us to use six

harmonics because after the sixth harmonic the addi-

tional reduction in difference between the LTDM and

the HLTDM, in our map average, becomes small rela-

tive to the reduction in difference gained when adding

each of the first six harmonics.

Maps created using six harmonics (Figs. 1a,d) were

unsatisfactory in that they consistently failed our tests of

connectedness by exceeding the thresholds mentioned

above. The most prominent cause of disconnectedness

is a persistent link betweenWyoming and Illinois, which

belong to disconnected parts of the same region. This is

illustrated in Fig. 1d for region 8 where southern Illinois

and easternMissouri are part of the same region as most

of Wyoming. The similarity between the HLTDMs of

the geographically separate areas of Wyoming and Illi-

nois, among other disconnected regions, indicates that

gross seasonality is not enough to define coherent pre-

cipitation regions. Subseasonal variations should play a

stronger role in identifying our regions if we desire

connectedness, especially on smaller scales. With that in

mind we experimented with keeping more harmonics

when constructing our HLTDM and we did find that the

more harmonics that were kept, the better the map

scored in each of our criteria. However, part of that

better score is coming from large variations on very

short time scales still present after averaging the data

over the full period of record, whereas we prefer

matching the broader seasonal cycle.

b. Long-term daily median of precipitation

To retain day-to-day variation, we considered con-

structing a time series from a central tendency of the

precipitation distribution for each day of the year for

each grid point. Because precipitation is known to

have a very skewed distribution (Ison et al. 1971) we

tested themedian as our central tendency.Unfortunately,

there are multiple locations in Arizona and New Mexico

where the median precipitation is 0 for every day of the

year. This does not reflect the seasonality in precipita-

tion that exists in those areas and makes the long-term

daily median a poor choice to represent the annual cycle

of precipitation.

c. LTDM of precipitation with and without a 3-day
running mean

Since a long-term daily median is a poor choice to

measure the annual cycle we trained SOMs on the

LTDM of precipitation at each grid point (Figs. 1b,e).

This LTDM is much noisier and less intuitive than a

HLTDM or long-term daily median but does avoid the

issues discussed in the previous two subsections. This

trade-off also creates regions that have better connect-

edness than regions made using a HLTDM or long-term

daily median but there are still areas of significant dis-

connectedness. Even averaging 32 years of data, there

remains significant variation from one day to the next

in the LTDM. Large daily variations are problematic so

we attempt to soften them with a simple nonrecursive

smoother so we used a simple nonrecursive smoother

in time on the raw precipitation data before creating

the LTDM. The smoothed value for day X equals one

quarter of day X 2 1 plus one-half of day X plus one

quarter of dayX1 1. A LTDM is then created from the

smoothed data at each grid point and used to train the

SOM. The smoothing altered the shapes of the SOM

regions, but the connectedness metric was not sufficiently

improved. Disconnected regions moved, but their num-

ber was not appreciably reduced. The smoothing had

insufficient benefit to any of the four criteria overall.

d. Working with the cube root of daily precipitation
data

It is well known that precipitation data fit a gamma

distribution (Ison et al. 1971) better than a normal distri-

bution. Therefore, transforming the gamma-distributed

precipitation data to a more normal distribution by tak-

ing the cube root of precipitation (Stidd 1953) was tested.

This operation has a much larger effect on large pre-

cipitation values than on small precipitation values, ef-

fectively reducing the impact of extreme data. This

reduction is valuable because we want the SOMs to be

based on the seasonal cycle, which facilitates coherence in

space and has links to extreme precipitation mechanisms

mentioned earlier. Additionally, we found that even the

LTDMs of neighboring grid points had large differences

in their peak values. Taking the cube root of the raw

precipitation data de-emphasizes the spatial variation of

these peak values. This method still retains the seasonal

cycle of precipitation and incorporates a reduced form of

subseasonal variation leading to maps that consistently

score better in all four criteria than themaps based on any
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of the methods discussed above. For low K values the

map using the cube root of precipitation performs mar-

ginally better than the map without taking a cube root.

The superiority of this method over using the LTDM

without taking the cube root grows as K increases and is

easily seen for maps with higher values of K (Fig. 1).

5. Results

a. Criteria values as a function of K

When making composites we increase the number of

events sampled by expanding the area we aggregate

over. Because we are analyzing extreme events here we

use the raw (i.e., no normalization or taking of the cube

root) precipitation data. We define an extreme event to

be a 6-h period that exceeds the 95th percentile for

precipitation accumulation at a particular grid point,

after discarding time steps with zero precipitation. For

each region we count the number of time steps when any

grid point reports an extreme as a ‘‘regional event.’’

Creating a threshold for the number of these regional

events that each region must have would necessarily

base the threshold on the driest (fewest precipitation

periods) region found by the SOM. Instead, we want

each region to aggregate more extreme events than

could be found from any single grid point within it. To

this end we calculate a regional extremes ratio (RER).

The RER is the number of time periods when a point

somewhere in the region exceeds the 95th percentile

divided by the number of time periods when there is rain

somewhere in the region. Since RER is a ratio based on

exceeding the 95th percentile, then the RER for an in-

dividual grid point would be essentially 0.05 or 5%. We

would like our SOM regions to capture at least 4 times as

many extreme events as an individual grid point would,

so we apply a RER threshold of 0.2 or 20% criterion to

our analysis. The RER allows comparison of extremely

dry and extremely wet areas of CONUS more than

would a fixed number of events. This ratio also allows

intercomparison of different datasets having differing

periods of data, grid intervals, and/or time intervals.

Figure 2 shows the relationship in CFSR data betweenK

and RER in the region with the lowest RER along with

the 20% threshold. From Fig. 2 it is clear that usingmore

regions means that each of those regions aggregate

fewer events and asymptotically approach the value

(RER 5 5%) for a single grid point. This simple RER

threshold indicates that values of K. 15 are eliminated

from further consideration in the CFSR data.

However, Figs. 3a–c show that as the number of re-

gions is increased the compactness ratio and IAC im-

prove dramatically and MAF sees modest improvement

in the worst region’s ratio. But increasing the number

of regions decreases the number of events in each region

by decreasing the average areal extent of each region

over which we can aggregate events. Therefore, a bal-

ance is sought between two competing goals. The first

goal is to create regions that are large enough to have

meaningfully more events to aggregate compared to

considering a single grid point. The second goal is to

create regions that attain high scores in compactness and

low (better) scores in IAC and MAF. Creating a map

with fewer regions helps the first goal while creating a

map with more regions helps the second goal.

Of the K values that pass the event threshold de-

scribed (2–15) the values that do not meet our robust-

ness criteria (values, 0.65 in Fig. 3d) are discarded. The

remaining values (K 5 3, 5–13, and 15) are ranked by

their median score in compactness ratio, and their worst

region’s scores in MAF and IAC. The worst region’s

score was judged to be more important than the median

for the purpose of selecting the optimal value ofK due to

the lack of variation in the median scores of MAF and

IAC. In the case of IAC this was particularly true for

K . 10. The ‘‘optimal’’ K value with the best average

rank is 15 in this paper. One notes thatK5 12 also does

very well in this comparison and is the most compact of

all the maps considered.

An odd characteristic is a persistent link between the

Florida (FL) peninsula and the New Mexico/Texas

(NM/TX) border area, especially when K is small (K ,
10). At first glance this seems very strange because

peninsular Florida has a warm, humid, tropical climate

whereas the New Mexico and Texas border area is arid

(Kottek et al. 2006). This linkage also shows up in the

FIG. 2. The ratio of periods with extreme precipitation (.95%

value) to periods with nonzero precipitation (RER) in the CFSR

data contained within the region with the lowest RER for each

value ofK is shown in red. Our threshold of 20% (meaning 4 times

as many periods with an extreme somewhere in the region as occur

at a single grid point) is shown by the dashed line.
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CPC dataset, which is based on observations, ruling out

model error as causing this unexpected similarity. Our

procedure to normalize the data at each grid point

causes the grouping of New Mexico with Florida. Both

areas share a late summer relative peak in precipitation

and, while Florida is much wetter, the normalization of

precipitation magnitudes causes Florida’s humid mari-

time seasonal cycle to closely match New Mexico’s arid

continental cycle. For compositing events, having simi-

larly large spatially separated areas grouped together is

very undesirable. We design a process to identify and

label as separate regions large, spatially separate areas

that the SOM analysis assigns to one region. This pro-

cess is discussed further in section 6.

b. Variations within the CONUS of the annual cycle

Figure 4 illustrates how the normalized annual pre-

cipitation cycle varies across the CONUS; the spatial

variation is similar for smaller and larger numbers of

regions. The K 5 12 regions version is emphasized be-

cause it has the most compact regions of all maps that

were considered (K 5 2–15). All along the west coast

the wet season starts in November and ends around

May or June. Regions 10, 11, and 12 are then primarily

FIG. 3. Performance criteria for CFSR-based SOM regions created from the LTDM of the cube root of pre-

cipitation, adjusted to vary from 0 to 1, at each grid point. (a) Number of regions vs compactness ratio. The dashed

curve is the least compact region, and the red curve is themedian region’s compactness ratio. (b) Number of regions

vs isolated area count. The dashed curve is the worst performing region, and the red curve is the median isolated

area count of the regions. (c) Number of regions vs the minor areas fraction. The dashed curve is the worst pre-

forming region, and the red curve is the median minor areas fraction of the regions. (d) Number of regions vs

robustness. The red curve shows the map average for robustness for the shown values ofK. Preferred metric values

are higher in (a) and (d), and lower in (b) and (c).
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differentiated by the relative strength of their dry sea-

sons compared to themedian value of their annual cycle.

This strength decreases as we move from north to south.

In the southwest, region 1 encompasses most of Arizona

and New Mexico; it has both a weak wintertime wet

season (especially January–March) and much stronger

late summer to early fall wet season (July–September).

Hence, this area gets some wintertime precipitation,

probably from Pacific storm tracks, but is more influ-

enced by the North American monsoon (NAM; Adams

and Comrie 1997) in the late summer. The large late

summer peak in precipitation makes the annual cycle

here similar to the annual cycle in the Florida peninsula

as discussed above. The northern Great Plains are

dominated by wintertime precipitation with a fairly

strong dry season from July into November (region 9).

Moving south through the Great Plains we see a gradual

flattening of the annual cycle down into south Texas

(regions 6, 5, and 4). In the southeast and inland from

Florida, region 3 has a weak dry period (October–

December) leading into a winter and spring that are

near the annual mean precipitation rate with a slightly

wetter summer. The northeast (region 7) is fairly wet

until August and then becomes wet again in November.

Eight of the twelve regions in this map are to some

degree wintertime dominated when it comes to

precipitation.

6. Comparison between CFSR and CPC

When our criteria with respect to K are examined to

find the optimal value ofK for SOMs trained on theCPC

data, broadly similar results are found, with a few key

differences (Figs. 5 and 6). Comparing the regions with

the fewest unique events, for a given value of K, in the

FIG. 4. SOM regions with K 5 12 created from the LTDM of the cube root of precipitation, adjusted to vary from 0 to 1, at each grid

point. The surrounding plots show the representative LTDM of the cube root of precipitation, adjusted to vary from 0 to 1, at each grid

point. Themiddle 50% of grid points in each region are contained in the shaded area of each subplot. The subplots each begin at 1 January

on the left and end on 31December on the right. The valueK5 12 is chosen because it separates theNM/TXborder region fromFlorida in

these CFSR data and has the highest compactness ratio of all maps considered (K 5 2–15).

FIG. 5. As in Fig. 2, but for CPC data.
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CPC- and CFSR-basedmaps (not shown) shows that the

CPC-based maps have far fewer unique events. If the

region with the lowest RER, for a given value of K, in

the CPC-based maps is compared to the region with the

lowest RER, for the same value ofK, in the CFSR-based

maps, they will have a very similar value of RER

(comparing Figs. 5 and 2). So, even though the differ-

ent regions have different numbers of unique events due

to the temporal and spatial sampling and length of the

data, the RER is comparable, as intended. The median

compactness ratio of the CPC-based maps generally

increases with K apart from a dip into lower values for

K 5 8 and 9 (Fig. 6a). Unlike CFSR-based maps, the

worst region’s compactness ratio generally decreases

with increasing K for K . 5. As the number of regions

increases both the median and worst region’s IAC de-

creases steadily (Fig. 6b). The worst region in the CPC-

based maps exhibits this trend much more strongly than

does the worst region in the CFSR-based maps. The

median region’s MAF is very comparable to that of the

CFSR-based maps for K . 5, both having small values

that vary little. The worst region’s MAF in the CPC-

based maps is fairly constant between 0.4 and 0.5 except

forK5 2, 3, and 5 where it falls below 0.3 (Fig. 6c). This

is very different from the CFSR-basedmaps, which have

low values (;0.1) from K 5 12 through K 5 19 and

generally higher values (0.3–0.4) elsewhere (Fig. 3c).

The relationship between robustness and K of the CPC-

based maps is similar to the CFSR-based maps but with

overall higher robustness and different local peaks

(Fig. 6d).

To find the optimal value of K for the CPC-based

maps we used the same 20% threshold of regional events

divided by periods with nonzero precipitation. Applying

this threshold requires K , 17, excluding K 5 14. This

threshold is similar to the CFSR value despite the large

FIG. 6. As in Fig. 3, but for CPC-based SOM regions.
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difference in the upper bounds provided by the false

discovery rate for the CFSR-based maps compared to

the CPC-basedmaps. Again, this is because RER is a far

more limiting factor than FDR.

One does not expect the metrics presented here to find

the same optimal value of K for both datasets, but one

expects the values of K to be comparable. The median

compactness is lowest for K 5 8 and 9. The worst com-

pactness ratio is highest for K 5 2–4 and 6. The worst

compactness ratios show a decreasing trend with in-

creasing K, which is opposite from the CFSR data. Ad-

ditionally, the compactness ratios found for CPC data are

about half as large as those found for CFSR data. The

median region’s IAC is very noisy forK5 2–10 withK5
10 being the largest value. ForK. 10 themedian region’s

IAC is much smaller. The CPC IAC is generally larger

than for the CFSR data. As with IAC, the median re-

gion’sMAF is small forK. 5. Theworst region’sMAF is

lowest (i.e., best) for K 5 3 and 5 while the other values

are higher, between 0.4 and 0.5. The CFSR MAF values

are similar except for the worst regions from K 5 12–19,

where they are around half as much. The robustness of

CPC-based maps is highest (i.e., best) for K 5 8, 11, and

15. Compared to CFSR-basedmaps the CPC-basedmaps

have smaller differences between the most and least ro-

bustmaps. By these considerations CPC-basedmapswith

K 5 15 regions perform best.

In CPC data, K 5 15 is not large enough to have

Florida (FL) separate from the New Mexico–Texas

(NM/TX) border region through the SOM analysis;

instead,K$ 41 is required for this to happen. However,

maps with$41 regions have far fewer events per region

than ideal. Again, the link between FL and the NM/TX

border region is caused by those separate areas experi-

encing their respective wet seasons at nearly the same

time of year. Because of the distance between FL and

NM, the relatively similar sizes of these two subregions,

the region they both belong to should be separated into

two distinct regions for analysis and making of com-

posites. This approach is recommended for all regions

with a minor area that is greater than a quarter the size

of themajor area; for reference, the FL part of region 4 is

0.41 the size of theNM/TXpart in Fig. 7a. The FL part of

region 5 is 0.53 the size of the NM/TX part in Fig. 7c. In

the analysis shown in this paper, the only regions that

would meet this requirement encompass FL and

NM/TX and the separation results in a map with 12 and

16 regions and is shown in Figs. 7b and 7d. One notes

that this threshold does identify other regions for sepa-

ration at high values ofK ($20). For some of these maps

Michigan (MI) is its own region and the two parts of MI

are disconnected from one another.

7. Comparison between SOM and other
regionalizations

Karl and Knight (1998) used nine regions to analyze

precipitation trends over the CONUS based on com-

bining entire states. State boundaries do not neces-

sarily correspond to meteorological ‘‘boundaries’’ or

FIG. 7. SOM regions from the CPC data: (a)K5 11, (b)K5 11 again but with region 4 separated into two distinct

regions to create 12 regions, (c)K5 15, and (d)K5 15 again but with region 5 separated into two distinct regions to

create 16 regions. IAC is the mean value of the isolated area count, and MAF is the mean value of the minor areas

fraction. These CPC data are created from the LTDMof the cube root of precipitation, adjusted to vary from 0 to 1,

at each grid point, same as was done for CFSR data.
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climatological zones. Nonetheless, their choice of re-

gions has been popular so it is important to see how their

regions compare with our SOM-based regions. Their

map (Fig. 8a) is constrained by state boundaries, and

therefore scores very well in our connectedness metrics.

The Karl and Knight map also does a fairly good job of

grouping areas by their annual cycle of precipitation in

many parts of the CONUS, although this was not their

stated goal. To compare the Karl and Knight map

quantitatively to the SOM method, we created a SOM

with nine regions (see Fig. 8c). Both Figs. 8c and 8e were

created with eight regions, and the ninth region comes

from separating Florida from the New Mexico–Texas

border region as described in the previous section. We

want a quantitative measure of how much each grid

point is like the rest of the grid points in its region in

terms of its annual cycle. For each of Figs. 8a and 8c we

calculate the root-mean-square difference (RMSD)

between the LTDM-n at each grid point and themean of

each other grid point’s LTDM-n within the region the

original grid point belonged to. The RMSD is found by

taking the squared difference in LTDM-n at each day

between one grid point and the average value of the

LTDM-n within the region on that day, then taking the

average of all days. Small values of this RMSD indicate

that a specific grid point is very much like the rest of its

region, and large values indicate a grid point that is quite

different. The result for each map is plotted in Figs. 8b

and 8d.We do not believeK5 9 creates regions that are

small enough to confidently aggregate events within.

This is because theK5 9map has a smaller compactness

ratio compared to a map with K 5 15 (Fig. 3a). None-

theless, Karl and Knight use nine regions so we make

our comparison using nine SOM-based regions. Even

using a small (K 5 9) number of regions, the SOM re-

gions have grid points with a more consistent annual

cycle than do the Karl and Knight regions. While we

see a number of areas with particularly poor consistency

FIG. 8. (a) Our representation of the nine regions used by Karl and Knight (1998). (b) The root-mean-square

difference (RMSD), described in section 5b, of the regions in (a). (c) SOM regions created from the LTDM of the

cube root of precipitation (CFSR data), adjusted to vary from 0 to 1, K5 9 to match the number of regions in (a).

(d) As in (b), but for the regions shown in (c). (e) As in (c), but for CPC data. (f) As in (d), but for the regions shown

in (e). Note that regions in (e) are calculated from CPC data but the RMSD is calculated with CFSR data to be

comparable to (b) and (d). For both (c) and (e) Florida was manually separated from the NM/TX border region to

form the ninth region. This does not substantially affect the results shown in (d) and (f). Smaller RMSD is desirable.

15 NOVEMBER 2019 SWENSON AND GROT JAHN 7757



in Karl and Knight’s regions, namely Mississippi, west-

ern Montana, and the Four Corners states, we also see

that their choice performed very well in the Pacific

Northwest.

The North American Regional Climate Change As-

sessment Program (NARCCAP; Mearns et al. 2012)

uses regions outlined in Bukovsky (2011) to capture

North American regional climatology; we refer to these

regions as the Bukovsky regions. For a more direct

comparison to our regions, we have plotted only those

17 Bukovsky regions that exist over the CONUS

(Fig. 9b). These Bukovsky regions closely follow those

used by the National Ecological Observatory Network

(NEON) put forward in Kampe et al. (2010). These

regions are based on a statistical analysis of nine eco-

climate state variables, including temperature, pre-

cipitation, and solar insolation. One should not expect

them to match exactly our regions since ours are based

on normalized precipitation only. To compare our re-

gions to the Bukovsky regions, we again match the

number of regions, now K 5 17 in Fig. 9. For each grid

point we find the fraction of grid points that were in the

same region as the target grid point under the Bukovsky

regions compared to how many are still in the same re-

gion as the target grid point under the SOM regions,

similar to ourmeasure of robustness. This fraction varies

between 0 and 1, with values of 1 indicating more

agreement between the two sets of regions; the result of

this calculation is shown in Fig. 9c. The map average

result is less than 0.5, whichmeans the average grid point

is in a region with more than half of the grid points being

different when we compare the Bukovsky regions to our

SOM generated regions from CFSR data. While the

maps, overall, are not very similar, one recognizes that

there are areas of fairly good agreement. This is notable

because of the differing ways the regions were produced.

The areas of agreement are shown by bluer hues in

Fig. 9c. The places where agreement is good are simi-

lar to those found in comparison with Karl and Knight,

like the Pacific Northwest, New England, Southern

FIG. 9. (a) SOM regions created from the LTDM of the cube root of precipitation (CFSR data), adjusted to vary

from 0 to 1,K5 17 to match the number of regions in (b). (b) Bukovsky regions plotted over the CONUS domain.

(c) The agreement between themaps in (a) and (b) using the robustness method described in section 5b except both

maps being compared have 17 regions. Hence, larger (darker blue) values mean greater agreement and smaller

(darker red) values mean less agreement. (d) As in (a), but for CPC data. (e) As in (c), but comparing maps in

(b) and (d).
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California, parts of the Great Plains, southernMichigan,

and Florida. Overall, the method used by Bukovsky

produces a map that is quite different to the one pro-

duced by the SOM method. That is expected because

the two maps were designed with different purposes:

Bukovsky’s purpose being to create regions sensitive to

changes in temperature and precipitation to aid in North

American climate change assessment, while ours is to

group areas purely by the annual cycle of precipitation.

It is nevertheless encouraging to find some common-

alities between these regionalizations. The same com-

parison is shown between the Bukovsky regions and

SOM regions based on CPC data (Figs. 9d,e). Figure 9d

was created from a SOM with 16 regions with the 17th

region created by manually separating Florida from the

NM/TX border region. The map average is again below

0.5 and is quite similar to Fig. 9c. The CPC and CFSR

differences from the Bukovsky regions are generally

similar; a couple of exceptions are for Florida and the

very northernmost part of California.

8. Conclusions

This paper introduced a new and objective way to

select contiguous geographic areas that experience

precipitation at similar times of the year. Our purpose in

devising this methodology is to identify regions for

compositing information about extreme events. We

have devised our method to focus on the timing of

precipitation during the year because the timing is a key

factor in determining which meteorological processes

are primarily causing the precipitation. Our method

creates ‘‘coherent’’ regions based only on the normal-

ized annual cycle of precipitation, or LTDM-n. These

regions are compact enough to aggregate extreme pre-

cipitation events within each region with confidence that

the events are similar. The directness of interpretation

of the LTDM-ns that represent each region makes

comparisons to other regionalizations or datasets

straightforward and easily quantifiable. Comparisons to

other regionalizations are also aided by flexibility in the

number of regions.

In an effort to optimize the choice for K (the number

of SOM regions), six criteria were developed tomeasure

four aspects of the precipitation regions. We first tested

the statistical distinguishability, at the 5% level, of each

pair of regions using the false discovery rate to reveal the

upper bound of the number of regions that could be

created. This produced upper limits of 32 regions for

CFSR data and 63 regions for CPC data. We next

applied a criterion called the regional extremes ratio,

whose 20% threshold means all the SOM regions must

have at least 4 times as many time periods with at least

one grid point reporting precipitation exceeding the

95th percentile thanwould occur at a single grid point. In

short, this RER criterion requires every region to pro-

vide notably more events for aggregation than if a single

grid point was used. Also, RER facilitates comparison

across datasets with different resolution and length. We

created two criteria to measure connectedness because

we want to track two distinct aspects of connectedness.

The first aspect, measured by IAC, is how many groups

of grid points are disconnected from the largest group

in a region. The second aspect, measured by MAF, is

how large are the disconnected groups relative to each

other and to the largest group. Both criteria’s map av-

erages (i.e., the average over allK regions in a particular

map) have a strong inverse trend with K. As more re-

gions are added, the average region becomes more

connected. The trend in the least connected region as K

increases is much flatter. This indicates that there are

only a few regions per map that have substantial values

of IAC and MAF. These regions usually occur in

mountainous or desert regions of the Southwest. Ro-

bustness refers to how much a map is altered by

changing the value of K. The relationship between ro-

bustness and K does not exhibit a clear trend and is

better described as a sawtooth function. For one to

several consecutive values of K, robustness is relatively

low and then for one to several K values it is relatively

high. Compactness is measured by the ratio of the

square root of the area of a region divided by the pe-

rimeter of that region. The map average of compactness

tends to increase (improve) as the value of K increases.

Our methodology was applied to CFSR and CPC

precipitation data. The criteria provide a guide for

choosing an optimal value for K, but in practice there

were additional problems. A persistent problem is that

fairly high values of K are needed in our tested data to

decouple an area including the Florida peninsula from

an area near the NM/TX border that are placed in the

same region by the SOM algorithm. In practice, one

might either opt for a larger K or if that is not feasible

(i.e., if the number of events within the regions becomes

too small) then manually intervene and treat the two

areas as separate regions in later applications, as shown

in Fig. 7.

For these CFSR data, K 5 15 is optimal and the map

has several notable features and quite compact regions

(Fig. 1f). Both the East and Gulf Coasts are broken into

three different regions (although they do share region 2)

while the West Coast is divided into only two regions.

For these CPC data, K 5 15 is optimal and after sepa-

rating the Florida andNM/TX border areas yields a map

with 16 regions (Fig. 7d). In comparing the CPC map

with 16 regions to the CFSR map with 15 regions the
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most obvious difference is in the Pacific Northwest.

Regions 12 and 13 in the CFSR are largely combined

into region 15 in the CPC data. Florida and the Gulf

Coast are in separate regions for the CPC but the same

region for the CFSR. Another notable difference is that

throughout the Great Plains the lines between regions

tend to run from north to south or from east to west in

the CFSRmapwhile in theCPCmap they are diagonally

oriented from southwest to northeast.

Maps created from CFSR and from CPC data were

compared to regions described in Karl and Knight

(Fig. 8). All three maps with nine regions performed

least well in our RMSD test in similar areas of the

country. Substantial differences between the local an-

nual cycle and the regional annual cycle were found

along the Rocky Mountains, in the Southwest deserts

and along a line drawn from east Texas to Michigan.

These differences have lower magnitudes in the two

SOMs than in the Karl and Knight regions. All three

maps did relatively well in the Pacific Northwest and

parts of the High Plains. The two SOMs did much better

in Florida, while the Karl and Knight regions did better

in New York State.

Maps created from CFSR and CPC data were com-

pared to the Bukovsky regions (Fig. 9). Both SOMs

agree with the Bukovsky regions in the north and south

parts of the West Coast as well as east Texas and New

England. The SOMs and the Bukovsky regions disagree

more strongly over much of the Great Basin, western

mountains, and central plains. The CFSR map agrees

with Bukovsky in Florida but not in other parts of the

Southeast; this relationship is reversed between the CPC

and Bukovsky regions. Overall, the agreements and

disagreements between the CPC and Bukovsky regions

are both stronger in magnitude than those between the

CFSR regions and the Bukovsky regions.

This method can be applied elsewhere in the world

and the size of the regions is tunable by changing the

number of regions (K) specified in the SOM. This flex-

ibility allows the technique be used to investigate

problems over different spatial scales. Here our interest

is in large-scale meteorology but in principle one could

find a dense observational network and examine how

precipitation varies within an individual watershed.

These regions are the first step in a process to auto-

mate identification of the primary meteorological

mechanism or mechanisms creating an extreme pre-

cipitation event. This SOM-based approach can be used

to assess how well climate models capture the spatial

changes in the annual cycle of precipitation.

Acknowledgments. U.S. Unified Precipitation data

are provided by the NOAA/OAR/ESRL PSD, Boulder,

Colorado, USA, from their Web site at https://www.esrl.

noaa.gov/psd/. CFSR data are provided by the DOC/

NOAA/NWS/NCEP/EMC on their Web site at https://

rda.ucar.edu/datasets/ds093.0/. We also acknowledge

funding from U.S. DOE Office of Science Award

DE-SC0016605, and USDA NIFA Hatch project Ac-

cession 1010971.

REFERENCES

Adams, D. K., and A. C. Comrie, 1997: The North American

monsoon. Bull. Amer. Meteor. Soc., 78, 2197–2214, https://

doi.org/10.1175/1520-0477(1997)078,2197:TNAM.2.0.CO;2.

Bukovsky, M. S., 2011: Masks for the Bukovsky regionalization of

North America. Regional Integrated Sciences Collective, In-

stitute for Mathematics Applied to Geosciences, National

Center for Atmospheric Research, accessed 24 December

2018, http://www.narccap.ucar.edu/contrib/bukovsky/.

Chen, M., and Coauthors, 2008a: CPC Unified Gauge-Based

Analysis of Daily Precipitation over CONUS, V1.0. Earth

Science Research Lab Physical Sciences Division, accessed

1 October 2016, https://www.esrl.noaa.gov/psd/cgi-bin/db_

search/DBListFiles.pl?did5125&tid554729&vid52415.

——, W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins,

and J. E. Janowiak, 2008b: Assessing objective techniques for

gauge-based analyses of global daily precipitation. J. Geophys.

Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

Grotjahn, R., 2011: Identifying extreme hottest days from large

scale upper air data: A pilot scheme to find California

Central Valley summertime maximum surface tempera-

tures. Climate Dyn., 37, 587–604, https://doi.org/10.1007/

s00382-011-0999-z.

——, and G. Faure, 2008: Composite predictor maps of extraor-

dinary weather events in the Sacramento, California, re-

gion.Wea. Forecasting, 23, 313–335, https://doi.org/10.1175/

2007WAF2006055.1.

——, and R. Zhang, 2017: Synoptic analysis of cold air outbreaks

over the California Central Valley. J. Climate, 30, 9417–9433,

https://doi.org/10.1175/JCLI-D-17-0167.1.

Hewitson, B. C., and R. G. Crane, 2005: Gridded area-averaged

daily precipitation via conditional interpolation. J. Climate, 18,

41–57, https://doi.org/10.1175/JCLI3246.1.

Ison, N. T., A. M. Feyerherm, and L. D. Bark, 1971: Wet period

precipitation and the gamma distribution. J. Appl. Meteor., 10,

658–665, https://doi.org/10.1175/1520-0450(1971)010,0658:

WPPATG.2.0.CO;2.

Johnson, N. C., 2013: Howmany ENSO flavors can we distinguish?

J. Climate, 26, 4816–4827, https://doi.org/10.1175/JCLI-D-12-

00649.1.

Kampe, T. U., B. R. Johnson, M. Kuester, and M. Keller, 2010:

NEON: The first continental-scale ecological observatory with

airborne remote sensing of vegetation canopy biochemistry

and structure. J. Appl. Remote Sens., 4, 043510, https://doi.org/

10.1117/1.3361375.

Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation

amount, frequency, and intensity in the United States. Bull.

Amer. Meteor. Soc., 79, 231–242, https://doi.org/10.1175/1520-

0477(1998)079,0231:STOPAF.2.0.CO;2.

Kohonen, T., 1982: Self-organized formation of topologically cor-

rect feature maps. Biol. Cybern., 43, 59–69, https://doi.org/

10.1007/BF00337288.

7760 JOURNAL OF CL IMATE VOLUME 32

https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
https://rda.ucar.edu/datasets/ds093.0/
https://rda.ucar.edu/datasets/ds093.0/
https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2
http://www.narccap.ucar.edu/contrib/bukovsky/
https://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBListFiles.pl?did=125&amp;tid=54729&amp;vid=2415
https://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBListFiles.pl?did=125&amp;tid=54729&amp;vid=2415
https://doi.org/10.1029/2007JD009132
https://doi.org/10.1007/s00382-011-0999-z
https://doi.org/10.1007/s00382-011-0999-z
https://doi.org/10.1175/2007WAF2006055.1
https://doi.org/10.1175/2007WAF2006055.1
https://doi.org/10.1175/JCLI-D-17-0167.1
https://doi.org/10.1175/JCLI3246.1
https://doi.org/10.1175/1520-0450(1971)010<0658:WPPATG>2.0.CO;2
https://doi.org/10.1175/1520-0450(1971)010<0658:WPPATG>2.0.CO;2
https://doi.org/10.1175/JCLI-D-12-00649.1
https://doi.org/10.1175/JCLI-D-12-00649.1
https://doi.org/10.1117/1.3361375
https://doi.org/10.1117/1.3361375
https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288


Kottek,M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006:World

map of the Koppen–Geiger climate classification updated. Me-

teor. Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130.

Kunkel, K. E., S. A. Changnon, and R. T. Shealy, 1993: Temporal

and spatial characteristics of heavy-precipitation events in the

Midwest. Mon. Wea. Rev., 121, 858–866, https://doi.org/

10.1175/1520-0493(1993)121,0858:TASCOH.2.0.CO;2.

——, D. R. Easterling, D. A. R. Kristovich, B. Gleason,

L. Stoecker, and R. Smith, 2012: Meteorological causes of the

secular variations in observed extreme precipitation events for

the conterminous United States. J. Hydrometeor., 13, 1131–

1141, https://doi.org/10.1175/JHM-D-11-0108.1.

Mearns, L. O., and Coauthors, 2012: The North American Re-

gional Climate Change Assessment Program: Overview of

phase I results. Bull. Amer. Meteor. Soc., 93, 1337–1362,

https://doi.org/10.1175/BAMS-D-11-00223.1.

Saha, S., and Coauthors, 2010a: NCEP Climate Forecast System

Reanalysis (CFSR) Selected Hourly Time-Series Products,

January 1979 to December 2010. Research Data Archive at

the National Center for Atmospheric Research, Computa-

tional and Information Systems Laboratory, accessed 13 No-

vember 2016, https://doi.org/10.5065/D6513W89.

——, and Coauthors, 2010b: The NCEP Climate Forecast System

Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1058, https://

doi.org/10.1175/2010BAMS3001.1.

Stidd, C. K., 1953: Cube-root-normal precipitation distributions.

Eos, Trans. Amer. Geophys. Union, 34, 31–35, https://doi.org/
10.1029/TR034i001p00031.

Wang, B., 1994: Climatic regimes of tropical convection and rain-

fall. J. Climate, 7, 1109–1118, https://doi.org/10.1175/1520-

0442(1994)007,1109:CROTCA.2.0.CO;2.

—— and LinHo, 2002: Rainy season of the Asian–Pacific summer

monsoon. J. Climate, 15, 386–398, https://doi.org/10.1175/

1520-0442(2002)015,0386:RSOTAP.2.0.CO;2.

Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu,

and S.Yang, 2007:A gauge-based analysis of daily precipitation

over East Asia. J. Hydrometeor., 8, 607–626, https://doi.org/

10.1175/JHM583.1.

15 NOVEMBER 2019 SWENSON AND GROT JAHN 7761

https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1175/1520-0493(1993)121<0858:TASCOH>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<0858:TASCOH>2.0.CO;2
https://doi.org/10.1175/JHM-D-11-0108.1
https://doi.org/10.1175/BAMS-D-11-00223.1
https://doi.org/
http://dx.doi.org/10.5065/D6513W89
https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.1029/TR034i001p00031
https://doi.org/10.1029/TR034i001p00031
https://doi.org/10.1175/1520-0442(1994)007<1109:CROTCA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007<1109:CROTCA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
https://doi.org/10.1175/JHM583.1
https://doi.org/10.1175/JHM583.1

