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Abstract/Synopsis 

Baroclinic instability refers to a process by which perturbations draw energy from the 

mean flow potential energy. Conditions in the middle latitude atmosphere are conducive 

for zonally-varying structures (eddies) to grow by this process. The baroclinic energy 

conversions are proportional to eddy heat fluxes, these eddies also accomplish some of 

the necessary poleward transport of heat, especially in middle latitudes. Baroclinically 

unstable solutions arising in simple linear quasi-geostrophic formulations have properties 

similar to observed frontal cyclones. Improving those simplifying assumptions (such as 

allowing nonlinearity) improve the similarity between simulated and observed properties. 

 

1.1 INTRODUCTION 

 

Baroclinic instability draws energy from the portion of the potential energy available to 

be converted (referred to as ‘available potential energy’ or APE) is dependent upon a 

horizontal gradient of temperature. The conversions of energy are proportional to 

perturbation heat fluxes in the horizontal and vertical. From thermal wind balance, a 

horizontal temperature gradient implies the presence of vertical shear. So, baroclinic 

instability is also an instability of the vertical shear. 

 

Another view of baroclinic instability emphasizes interacting potential vorticity (PV) 

anomalies. Baroclinic instability is often studied by linearizing the dynamics equations 

and using eigenvalue or initial value techniques. These alternative views and analysis 
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procedures generally provide complementary means to understand better baroclinic 

instability. 

 

The atmosphere requires heat fluxes to maintain the observed pattern of net radiation 

(positive in the tropics, negative poleward of 38 degrees on an annual average). A zonal 

mean meridional circulation, such as a tropical Hadley cell, can generate these heat 

fluxes. The poleward moving air in the Hadley cell accelerates while conserving angular 

momentum. In contrast, lower tropospheric air is slower-moving. Hence, vertical shear 

builds towards the poleward edge of each Hadley cell. In middle latitudes, baroclinic 

instability provides a mechanism to explain how the eddies form and evolve whilst 

including and accomplishing the necessary heat fluxes. Theoretical models of baroclinic 

instability can simulate various observed properties of midlatitude eddies including: the 

dominant length scales, propagation speed, vertical structure, and energetics. 

 

1.2 AN ILLUSTRATIVE MODEL 

 

An illustrative model provides mathematical relations and archetype solutions for the 

concepts that follow. 

  

1.2.1 Mathematical formulation 

 

The model uses quasi-geostrophic (QG) approximations and nondimensional scaling 

appropriate for midlatitude frontal cyclones. PV has contributions from the interior and 
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from temperature gradients at rigid bottom (z=0) and top (z=ZT) boundaries. PV in the 

QG system can be written: 

 

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ψ is the horizontal velocity streamfunction,  is density, g is the acceleration of gravity,  

is the static stability from the horizontal mean potential temperature. The coordinates are: 

x eastward, y northward, and z upward. Nondimensional length scales are L in the 

horizontal and D in the vertical. fo is the constant part while  is the meridional derivative 

(approximated as a constant) of the Coriolis parameter.  

 

An inherent horizontal length scale is the Rossby radius of deformation (LR = N H f0
-1) 

where N is the Brunt Väisälä frequency (N2 = gD-1) and H = RTg-1 is the scale height 

(an inherent vertical length scale). Thus,  = (LH)2(LRD)-2 relates the assumed scales L 

and H to LR and D. 

 

QGPV includes three distinct parts: absolute vorticity (AV) which includes relative 

vorticity (RV), “thermal” vorticity (TV), and boundary PV (BPV). Positive PV is 

associated with an interior trough (in geopotential) and/or a warm surface (i.e. boundary) 

temperature anomaly. 
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When the vorticity and potential temperature conservation equations are combined, one 

obtains a time dependent equation for QGPV conservation: 
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with boundary conditions at the bottom and top 
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“Basic state” variables are specified: U (independent of x) is zonal wind, and Q is the 

interior part of the QGPV; meridional and vertical velocities are zero. One can solve (3) 

as an initial value problem by specifying an initial streamfunction or potential vorticity.  

 

An eigenvalue problem can be formulated from (3). A common approach assumes time 

and space dependence in this form: 

 

ψ φ( , , , ) Re ( , ) exp( ( ))x y z t y z ik x ct= −l q    (4) 

 

for the “perturbation” streamfunction being sought. This solution has zonal wavenumber 

k and complex phase speed c. The growth rate is given by kIm{c}. If U has no meridional 

variation, then one can assume a wave-like y dependence too: exp(ily). When meridional 

wavenumber l equals zonal wavenumber k, the solution is a “square wave”. Perturbation 

velocities are defined as u = - /y and v = /x. 
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Additional simplifying approximations are often made. A particularly simple form, 

commonly labelled the “Eady model”, was described by E.T. Eady in 1949. The Eady 

model assumes wavelike meridional structure, Q/y = 0, U = z, incompressibility (  = 

constant), and  = 1. Then (3a) is reduced simply to solving q’ = 0 in the interior where 

the prime denotes the “perturbation” sought. The Eady eigenvalue problem can be solved 

analytically, yielding a pair of “normal modes” one growing, one decaying for scaled 

wavenumber  < ~2.4. The scaled wavenumber:  

α ε= + −( )
/

k l2 2 1 1 2m r      (5) 

 

is proportional to absolute wavenumber and static stability. 

 

Equations for perturbation kinetic energy, Ke and available potential energy, Ae are: 
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The volume integrals are over a closed domain. In the QG system, /z is proportional 

to potential temperature , making the first term on the RHS of (6a) proportional to a 

meridional heat flux, while the second term is proportional to a vertical heat flux. The 

specified vertical shear, U/z is proportional to the available potential energy, Az of the 

basic state and is the energy upon which the baroclinic instability mechanism feeds. The 

first term on the RHS of (6b) is a barotropic energy conversion. The barotropic 

conversion is proportional to the divergence of eddy momentum flux and also draws 

energy from the mean flow. The second term on the RHS of (6a) and (6b) is the same but 

with opposite sign indicating a conversion between Ae and Ke. 

 

1.2.2 Example solutions 

 

This QG eigenmodel of baroclinic instability is applicable to the midlatitudes. In these 

regions zonal flow increases with height reaching a maximum near the tropopause. Fig. 

1a is a representative nondimensional profile of U where the tropopause is at 

nondimensional z = 1.0. The growth rate and phase speed spectra along with the 

(growing normal mode) eigenfunction structures for different k are shown in Fig. 1 as 

well. The growth rate has maximum value at a specific value of . The vertical structure 

tends to have relative maxima at the surface and near the tropopause, but it becomes 

progressively more bottom-trapped for shorter waves. The phase varies such that unstable 

modes tilt upstream with height, i.e. against the mean flow shear. Other solutions to (3), 

labeled “continuum modes”, are relevant to “nonmodal” growth. 

<near Fig 1> 
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For shorter waves the eigenmodes with lower level maximum tend to dominate (when 

compressibility is included) and the solution decays rapidly away from the boundary. For 

longer waves the tropopause level maximum tends to dominate (Fig. 1d). Eady model 

normal modes have interior q’ = 0; from (1): the LaPlacian increases as k2 requiring a 

rapid change with height for short waves to make the thermal term comparable to the 

LaPlacian term (this leads to boundary trapping of the solutions). For longer waves, the 

LaPlacian becomes small and the vertical structure is more evenly spread in the vertical, 

hence these modes are “deeper”. 

 

Typical geopotential patterns observed prior to frontal cyclone development have 

separate surface and upper troposphere troughs, each equivalent-barotropic (vertical 

trough axis), with the upper level trough more prominent. A crude simulation of that 

initial state is used to generate solutions shown in Fig. 2. Time series of the growth rates 

of several quantities are tracked over several days. The time series include potential 

enstrophy (H = (q’)2 ) and total energy (TE = Ae + Ke) integrated over the whole domain. 

The solutions asymptote to the most unstable normal mode growth rate as that eigenmode 

emerges to dominate the solution. The growth rate has transient peak values that can 

exceed the asymptotic (normal mode) value. 

<near Fig. 2> 

 

1.3 CLASSICAL VIEW 
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Baroclinic instability draws upon the APE of the environment in which an eddy sits. 

Since APE is related to a horizontal temperature gradient, and that in turn to the vertical 

shear, it can be viewed as a type of shear instability. One advantage of doing so is to 

make comparisons with barotropic instability which draws energy from the horizontal 

shear. This view provides a link to eddy fluxes that are observed and necessary for each 

conversion.  

 

As demonstrated in (6) heat fluxes are necessary to have a baroclinic energy conversion. 

Horizontal heat fluxes imply that the temperature and mass (here ) fields are offset. The 

offset implies that the trough and ridge axes tilt upstream with elevation.  

 

<near Fig. 3> 

The QG formulation above is adiabatic, so individual parcels conserve their potential 

temperature () over time. For unstable modes, the horizontal and vertical eddy heat 

fluxes must distort the  field over time as suggested schematically in Fig. 3. An 

isentropic () surface is drawn in three-dimensional perspective; it curves up and over 

colder areas and dips down over warmer areas. Prior to eddy development, the isentropic 

surface did not vary in the x direction and had a shape like its intersection with the wall at 

x=0. The isentropic surface is distorted by flow around the high and low pressure centers 

and representative cold {c} and warm {w} trajectories are also drawn. When these 

trajectories are projected onto the x=0 wall they appear to cross the initial zonal mean 

isentrope and have a slope that is typically half the slope of the mean isentrope. In fact, 

they are changing the zonal mean of the isentrope to become more horizontal, thereby 
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reducing the horizontal temperature gradient and thus reducing Az. In this classical view, 

Az is reduced while Ae is increased by increasing the zonal undulations of the isentropic 

surface. Another aspect is that colder air is sinking while warmer air is rising, a process 

that lowers the center of mass and thus converts Ae into Ke. To lower the center of mass, 

the parcel paths must have the vertical component indicated but they must also be less 

than the slope of the mean isentropes for instability to occur. 

 

The classical view can incorporate latent heat release as follows. The bulk of the 

precipitation in a developing cyclone forms in the warm air sector of the storm. The 

release of latent heat further depresses the isentropic surfaces where there is poleward 

motion implying additional conversion of Az into Ae and Ke.  

 

1.4 POTENTIAL VORTICITY VIEW 

 

The potential vorticity view of instability tracks how two or more PV anomalies interact 

in a way that causes growth of the PV anomalies. PV is a fundamental conserved quantity 

for adiabatic motions. The illustrative model is designed around QGPV conservation. 

 

A PV pattern has an associated streamfunction and horizontal wind field. In general, (1) 

implies that PV emphasizes smaller scale variations than the streamfunction field. 

Inverting (1) obtains broad patterns of  associated with isolated packets of q. For 

example, PV anomalies in the upper troposphere have corresponding streamfunction 

extending through the whole troposphere (but somewhat larger amplitude at the level 
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where q has maximum magnitude. The associated winds are displaced from PV anomaly 

center by ¼ wavelength ( ~1 kkm). A similar depiction can be deduced for a PV anomaly 

associated with a surface temperature gradient. 

 

<near Fig. 4> 

PV anomalies are created by flow across PV contours. Fig. 4 illustrates how two 

sinusoidal PV anomalies can amplify each other. The PV gradient is reversed between the 

two levels, increasing with y at upper levels and decreasing with y at the surface. This 

pattern is consistent with upper tropospheric PV and the surface temperature gradient, 

respectively. (Recall that q is positive for either lower geopotential heights or warmer 

surface temperature.) The associated winds distort the PV pattern in a way that causes the 

PV pattern to propogate. However, the meridional wind associated with a PV anomaly is 

in quadrature with that anomaly so the PV cannot amplify itself. Growth is described 

simply as advection at the PV extrema that further amplifies the PV pattern. Since the 

associated winds extend beyond the elevation of the PV anomaly, there can be interaction 

between the PV anomaly and a second PV anomaly at another level. When the second PV 

anomaly is offset from the first as in Fig. 4a, the associated winds amplify the first 

anomaly.  

 

This mechanism also explains how developing cyclones maintain a preferred tilt (i.e. 

become “phase locked”). The lower anomaly is shifted horizontally to the right in Fig. 4b 

so that upper and lower anomalies are 180 degrees out of phase. The two PV anomalies 

no longer amplify each other’s PV anomalies (shutting off the instability mechanism). 
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Furthermore, the two anomalies reinforce the velocities midway between their positive 

and negative extremes thereby enhancing the propagation at each level; but the 

propagation is directed oppositely at each level thereby reducing the phase shift to 

reestablish the pattern in Fig. 4a. As with the classical view, normal modes are a special 

case where this phase locking is optimized. 

 

The PV view provides theoretical weight to a classic description of how cyclones 

develop: an upper level trough (PV anomaly) approaches a low level baroclinic zone 

(another PV anomaly) then growth commences. This paradigm is commonly labeled 

“type B” cyclogenesis.  

 

<near Fig. 5> 

The ‘type B’ cyclogenesis is illustrated in Fig. 5 using a QG nonlinear model. A nearly 

non-developing, nearly coherent upper tropospheric trough is propogating in a flow with 

vertical shear and is approaching a localized region of warmer surface temperature. The 

surface warm anomaly is also a positive anomaly of PV in the lower troposphere. The 

trough has maximum amplitude in the upper troposphere, so there are associated cold 

anomaly in the troposphere and warm anomaly in the stratosphere. The trough is a region 

of positive PV. Differential vorticity advection and warm air advection cause rising 

motion (of cold air) ahead of the trough. Analogously, sinking motion occurs behind the 

trough. Hence there is positive baroclinic conversion behind and negative ahead of the 

trough. Integrated over the whole system the net baroclinic conversion is zero. The 

vertical motion requires divergence and convergence above the peak rising motion. From 
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the QG vorticity equation convergence opposes the positive vorticity advection ahead of 

the trough at upper levels (reinforces it at lower levels) and in so doing maintains the 

vertical tilt of the trough even though the advecting wind speed increases with height. 

When the upper trough begins to encounter the low level warm anomaly, the warm 

advection in the poleward flow ahead of the trough is increased. Initially at lower levels, 

this warmer air rises (instead of the cold air) causing the baroclinic conversion ahead of 

the upper trough to become less negative and even positive, and the system begins to 

amplify. 

 

Observations show independent troughs at upper and lower troposphere prior to 

development with the upper approaching the lower. Neither trough has upstream tilt 

initially, such tilt emerges only after the two become favorably aligned and growth has 

commenced.  

  

A necessary condition for instability is that the across-flow mean gradient of PV change 

sign within the domain. In the illustrative model (3) and (4), >0 means that Qy > 0 in 

the interior, and the surface temperature gradient (d/dy < 0) implies that Qy < 0 at the 

ground. In the Eady model Qy =0 everywhere in the interior, so the normal mode 

instability comes from BPV having opposite sign at top and bottom boundaries. 

 

A necessary condition for instability is that a steering level, where U = Re{c}, lie within 

the domain. A supportive kinematic argument is that air parcels remain with the system 

(rather than blow through it or be left behind) and are more easily mixed laterally. For 
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really long waves, strong retrogressive motion caused by the  term leads to a different 

class of unstable eigenmodes for  < ~1.1 (note cusp in Fig. 1b) than for larger . 

 

The eddy meridional flux of potential voriticy is also linked to ∇⋅F in quasi-geostrophic 

theory, where F is the Eliassen-Palm flux. In addition, due to the strong meridional eddy 

heat flux present in a baroclinically-growing eddy, F has an upward pointing component. 

From wave theory, specifically the ‘generalized Eliassen-Palm relation’, the upward 

pointing EP flux provides an explanation for upper level amplification of the eddy as it 

grows nonlinearly. 

 

1.5 NORMAL MODES 

 

Normal modes are physically meaningful eigenfunctions. As in the illustrative model, the 

equations are linearized about a specified basic state and perturbation solutions are 

sought. Most commonly, the time and one or more space dependencies are assumed. By 

assuming a form like (4), unstable solutions grow exponentially. Simple enough models 

may be solved analytically. More commonly, the eigenvalue problem is solved 

numerically.  

  

Normal modes are consistent with many observed features: 

 

i. Unstable modes tend to be lined up along the jet axis (if present) in the mean flow.  
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ii. The most unstable wavelength is similar to the observed median size. The normal 

mode scale can be manipulated by varying the choices made for nondimensional 

parameters, but is on the order of 4500 km.  

 

iii. Solutions tend to develop similar zonal and meridional lengths, the latter responds to 

the width of the jet providing one natural scale in the model. Other properties 

(like static stability) also influence the length scales. 

 

iv. The vertical structure of the most unstable modes tends to have relative maxima at the 

surface and upper troposphere.  

 

v. In growing normal modes the temperature lags the mass field in the lower troposphere 

(typically by 20-50 degrees of phase for the most unstable mode). Two 

consequences are:  

First, troughs and ridges in the mass field must be displaced (i.e. tilt) upstream 

with increasing elevation. There is typically ¼ to ½ wavelength (1-2 kkm) 

between the trough location at the surface and at tropopause level.  

Second, the lag allows across-flow heat fluxes down the temperature gradient, as 

expected from (6a), even for geostrophic winds. In the Eady model the 

heat flux is uniform with height. Model improvements, most notably 

compressiblity, can emphasize the eddy heat flux in the lower troposphere 

(where observations find it most prominent). 
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vi. The rate of propagation is ~10-20 m/s: slower than jet stream level winds, but faster 

than (zonal average) surface winds. A steering level is defined as where the 

propagation speed of the storm equals the wind component along the storm’s 

track. The steering level for the most unstable normal modes is typically between 

700-500 mb depending on the assumptions made. For shorter waves, the steering 

level is closer to the surface since these modes move slower. Longer waves 

respond to competing effects: they have greater upper level amplitude (where U is 

faster) but greater sensitivity to  (which enhances retrograde motion). 

 

vii. The rate of growth is similar to but slower than that of observed cyclones. Observed 

doubling times are typically 1-2 days at upper levels.  

 

viii. Instability is inversely proportional to static stability. For example, the peak growth 

rate depends on  (= 2.0 in Fig. 1). From (2) and (5),  is proportional to static 

stability . Hence, smaller  places the most unstable peak at larger k making the 

growth rate (k Im{c}) larger. Kinematically, vertical motion needed in (6) 

becomes easier for smaller . 

 

The fact that normal modes have fixed tilt is not necessarily unrealistic. Observations of 

the vorticity equation terms support an approximately fixed structure for a developing 

low because the divergence term opposes the horizontal advection at upper levels but 

reinforces the horizontal advection at low levels. The normal modes (Fig. 1) are special 

structures where the net advection is exactly uniform throughout the depth of the fluid. 
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Tracking observed frontal cyclone troughs over time shows evidence that such storms 

maintain a roughly fixed tilt during their growth. The vorticity equation also illustrates 

instability whereupon the divergence term has positive vorticity tendency at a trough 

where vorticity is a maximum thus amplifying the peak vorticity (and vice-versa for 

ridges). 

 

In addition to the normal modes, the eigenfunctions include a class of solutions called 

“continuum” modes. For an adiabatic model continuum modes have equivalent 

barotropic structure (no tilt) making them neutral. In the Eady model, continuum modes 

have zero PV at all levels except at the critical level, where their amplitude has a “kink”. 

Continuum modes play a role in nonmodal growth.  

 

1.6 NONMODAL GROWTH 

 

Nonmodal growth is seen when solving initial value problems like (3). The formulation 

can be linear as in (3) or nonlinear. This approach is more general than eigenanalysis 

since the time dependence is not assumed as it is in (4).  

 

The solution at any time can be decomposed into a combination of eigenfunctions. For an 

arbitrary initial state, continuum and normal modes are present. These modes move at 

differing speeds. In a linear formulation the modes operate independently; as modes 

disperse, positive and negative reinforcement varies. The interference between modes 
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decays algebraically asymptotically. However, for some initial conditions it is possible to 

have sizable growth over a limited time period. 

 

For the Eady model, analytic solutions can be found which illustrate the process. Using 

an initial condition with upstream tilt ( ~ exp(imz) in (4) where m>0) yields solutions 

with normal mode and algebraic parts. The algebraic part has time dependence 

proportional to {(m – kt)2 + 2 }-1 and exp{ i (m – kt)z}. The amplitude increases while 

the upstream tilt becomes more vertical until t = mk-1 . After that, the wave tilts 

downstream and decays.  

 

Initial upstream tilt becoming more vertical with time has led to an expectation that RV 

increases at the expense of TV while interior PV remains conserved. However, 

exceptions can be found where large nonmodal growth occurs (in H) as upstream tilt 

develops from an initial state with no tilt. The explanation lies in a rough cancellation 

between RV and TV leaving the BPV evolution to dictate rapid growth in H. 

 

A robust interpretation of nonmodal growth is the progressively more favorable 

superposition of constituent modes. Continuum modes having mainly upper level 

amplitude tend to move fast, while modes with mainly lower level amplitude move 

slowly. Decomposition into eigenmodes of an initial state with upstream tilt finds faster 

continuum modes located upstream of slower continuum modes. Over time, the modes 

become more favorably lined up; the tilt becomes more vertical and the total amplitude 

increases. Fig. 6 illustrates the process. 
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<near Fig. 6> 

 

Nonmodal growth can be quite strong in simple models like Eady’s. However, most 

improvements to the model such as adding compressibility, variable Coriolis, and 

realistic vertical shear of U reduce nonmodal growth. Using more realistic initial states 

also tends to reduce nonmodal growth (e.g. using a wave packet instead of a wavetrain; 

using separate un-tilted upper and lower features instead of connecting them with a tilt). 

 

1.7 OTHER ISSUES  

 

Baroclinic instability has links with barotropic instability. First, each instability draws 

energy from mean flow shear. Second, barotropic instability has a similar stability 

criterion (absolute vorticity gradient changing sign in the domain). Third, there can be 

interference between the two instabilities. The most unstable baroclinic eigenmode has 

optimal structure for a flow having the vertical shear alone, but when horizontal shear is 

added to that flow a different structure is needed otherwise the eddy will be sheared apart. 

The subsequent structure is unlikely to be as optimal for baroclinic energy conversion. 

Hence, the baroclinic conversion will usually be reduced, though the barotropic growth 

mechanism may compensate. Fig. 7c illustrates such a calculation; in this case adding a 

purely barotropic flow reduced the growth rate even though the barotropic growth 

mechanism was activated. 

<near Fig. 7> 
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Baroclinically unstable frontal cyclones prefer to develop in certain regions. The 

preference may arise from local conditions such as: lower static stability or locally 

greater vertical shear. The illustrative model above assumes a wavetrain solution; when 

more localized development is considered, a variety of issues are raised.  

 

For example, if one uses a single low as the initial condition, the solution typically 

evolves into a chain of waves as the modal constituents of the initial state disperse. 

Alternatively, a wave packet initial condition might be used consisting of a “carrier 

wave” multiplied by an amplitude envelope. The packet evolution depends upon the 

mean flow properties and assumptions made in the model. However, for reasonable 

choices of parameters, one might find a packet that spreads while propagating downwind. 

The leading edge of the packet has mainly faster, wider, and deeper modes. The trailing 

edge has slower, shorter, and shallower waves. It is possible to construct a localized 

structure which resists this dispersion by making a judicious combination of eigenmodes 

having similar phase speed, but different zonal wavenumber. One such example was used 

when discussing ‘type B’ cyclogenesis (Fig. 5). Fig. 8 illustrates another example using 

neutral continuum modes. When this model is solved as an initial value problem the 

packet maintains a localized shape for a long time and almost no growth occurs since the 

normal modes were filtered out and there is very slow phase shifting of the constituent 

modes. However, when nonlinear advection is allowed, modes interact and soon 

amplitude is injected into all the eigenmodes including the growing normal modes which 

grow rapidly in this example. 

<near Fig. 8> 
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Studies of regional development spawned sub-categories of baroclinic instability. 

“Absolute” instability occurs when the wave packet expands faster than it propagates; the 

amplitude at a point keeps growing. “Convective” (in the advection sense) instability 

occurs when the packet moves faster than it spreads so that growth then decay occurs as 

the packet moves past a point. “Global” instability (like the eigensolutions shown here) 

has growth that is invariant to a Gallilean transform. Such is not the case for “locally” 

unstable modes. Normal modes for zonally-varying basic states look like carrier waves 

modulated by a spatially-fixed amplitude envelope; the envelope locally modifies the 

growth rate (sometimes called “temporal” instability); enhancing the global growth 

locally where the carrier wave propagates from lower to higher amplitude of the 

envelope. “Spatial” instability allows wavenumber to be complex while phase speed 

remains real. 

 

Nonlinear calculations raise other issues related to baroclinic instability. One issue 

concerns equilibration. The growing wave modifies the mean flow while drawing energy 

from it. This places a limit upon the cyclone development. In PV theory, this may be 

where the distortion shown in Fig. 4 becomes comparable to the cyclone width. Waves 

longer than the most unstable wave tend to reach larger amlitude than the linearly most 

unstable mode. One reason why is that they are deeper and so can potentially tap more 

APE in the mean flow. Another reason may be the larger scale in both horizontal 

dimensions provides a longer time for PV contour distortion. Another reason concerns 
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the inversion of a PV anomaly: the streamfunction amplitude is larger for a broader PV 

anomaly.  

 

“Life-cycle” studies model cyclones from birth to peak amplitude to decay. These studies 

typically find baroclinic growth followed by barotropic decay. This cycle fits the 

observed facts that eddies have a net heat flux and a net momentum convergence. These 

studies also reveal a characteristic evolution of the eddy structure: upper level 

amplification compared to the linear eigenmodes. An explanation is that saturation is 

reached sooner at the critical level and at the surface while upper levels continue to grow. 

Another was given above regarding the Eliassen-Palm flux F. When averaged over the 

life-cycle, the vertical distribution of the zonal mean eddy heat and momentum fluxes 

becomes more realistic.  

 

Finally, the atmosphere has higher order processes than the QG system. The biggest 

impact of ageostrophy is to break symmetries in the solutions. Fig. 7d shows the leading 

order ageostrophic effects for a linear model. Ageostrophy: causes enhanced eddy 

development on the poleward side (mainly by negative baroclinic conversion on the 

equatorward side), builds mean flow meridional shear, and slows down the wave. 

Ageostrophy also causes contours to be more closely spaced around a low and more 

widely spaced around a high. 
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(0138); Potential Vorticity (0140); Waves and Instabilities (0141). Quasi-geostrophic 

Theory (0326), Vorticity (0449). 

 

 

 
FIGURE CAPTIONS 
 



 25 

 

Figure 1 Quasi-geostrophic eigenanalysis. (A) Specified zonal wind U, and meridional 

gradient of interior potential vorticity Q0y versus scaled height. Z = 1 is 10km. (B) 

Growth rate and (C) phase speed versus absolute wavenumber . (D)-(F) Amplitude A, 

and phase P, for the growing normal mode for  = 0.8,  = 2.0, and  = 3.0, respectively. 

All three modes tilt westward (upstream) with increasing height. Dimensional 

wavelengths depend upon scaling assumptions, but reasonable choices imply that  = 0.8, 

 = 2.0, and  = 3.0 correspond to 11., 4.4, and ~2.9 kkm wavelengths respectively. 

(Zonal and meridional scales are set equal.) The same scaling implies phase speed of 9 

ms-1 and doubling time of ~1.2 days for  = 2.0. Adapted with permission from Grotjahn 

R (1980) Journal of the Atmospheric Sciences, 37: 2396-2406. 
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Figure 2 Initial value calculation. (A) Zonal cross section of initial streamfunction, 

dashed contours used for negative values. (B) Time series of growth rates for domain 

average potential enstrophy (solid line) and its components: RV2 (short dashed line), TV2 

(dot-dashed line), and BPV2 (long dashed line). Growth rates asymptote to the most 

unstable normal mode rate for this wavenumber (a=2.0). (C) Similar to (B) except for 

total energy (solid line), kinetic energy (short dashed line), and available potential energy 

(dot-dashed line).  
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Figure 3 Schematic diagram showing distortion of an isentropic surface by a 

baroclinically amplifying frontal cyclone. Dotted lines used for objects underneath the 

three dimensional isentropic surface. Surface high H, and low L, marked along with 2 

representative contours of surface pressure. Trajectories of representative parcels in the 

warm air W, and cold air C. Subscript s denotes projection onto the bottom surface while 

z denotes projection onto the meridional plane (where x = 0). The trajectories do not cross 

the isentropic surface but distort it. Initially the isentropic surface had negligible variation 

with x and looked like the current pattern at x = 0. The projections WZ and CZ seem to 

cross the initial isentropic surface but in fact are flattening it (which reduces Az). Rising 

air is warm while sinking air is cold which lowers the center of mass converting Ae into 

Ke 



 28 

 

Figure 4 Baroclinic instability from interacting PV anomalies at two levels. A 

representative PV contour (dot-dashed line) is drawn at each level. Note that the 

meridional gradient (Y direction) is opposite at the two levels. The offset is (A) ¼ 

wavelength and (B) ½ wavelength. A typical wavelength might be 4 kkm. Each anomaly 

has associated wind component parallel to the PV gradient; dashed arrows are winds 

from the lower PV anomaly, while solid arrows are from the upper anomaly. The winds 

created by each anomaly propagate that anomaly. In (A) each PV anomaly has a wind 

component that amplifies the undulation in the other anomaly (by having a non-zero wind 

at the center of the other anomaly) thereby causing growth. In (B) each PV anomaly has a 

wind component that augments the propagation of the other anomaly in the manner 

indicated by the broad arrows; this causes the anomalies to migrate to a phase offset like 

diagram (A). 
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Figure 5 (A) – (E) Zonal cross sections (East-West direction, x versus elevation, z) 
showing properties across the midpoint of a nearly-coherent, non-growing, upper level 
trough similar to those observed. z is scaled by 10 km and x by 1 kkm. Eddy: (A) 
streamfunction; (B) temperature; (C) vertical motion, positive upwards; (D) quasi-
geostrophic potential vorticity; and (E) baroclinic energy conversion shown. The 
baroclinic energy conversion averaged over the whole upper trough is zero. (F) 
Schematic zonal cross section of interaction between upper trough encountering a near 
surface warm anomaly. The upper trough, T moves in the direction of the solid arrow. 
The trough has eddy temperatures indicated by C for colder air, and W for warmer air. 
Hollow arrows show vertical motions. In the along-flow direction (x) there is upward 
motion ahead of the trough reaching a maximum near z ~ 0.6. Vertical motion is driven 
both by temperature advection (from 0.6<z <1.4) and differential vorticity advection 
(from 0.3<z <0.7). The associated divergence is indicated by solid ovals and 
convergence by dashed ovals. From the quasi-geostrophic vorticity equation, these 
divergence fields oppose vorticity advection by the mean flow at upper levels, and 
enhance that advection at lower levels. Hence, the trough maintains its vertical tilt in the 
presence of vertical shear in the zonal mean wind (U(z)). The sign of the baroclinic 
energy conversion, BCE is indicated by open + and – signs. The upper pattern of BCE is 
similar to panel (E). However, when the upward and poleward motion ahead of the upper 
trough encounters the warm anomaly, the vertical motion is locally enhanced as is the 
meridional heat flux. There is net generation of voriticty, net BCE, and the eddy begins to 
grow. Adapted with permission from Grotjahn, R. (2005) Quarterly Journal of the Royal 
Meteorological Society, 131: 109–124. doi: 10.1256/qj.03.163 
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Figure 6 Nonmodal growth as a superposition process. Four initial value linear 

calculations are shown. The top three rows show three individual neutral continuum 

modes at three times. The bottom row used the sum of the three modes at the initial time. 

(A) initial condition, (B) time when energy growth is a maximum in the sum, Time = 1, 

(C) time when growth rate is zero in the sum, Time = π. Adapted with permission from 

Grotjahn R, Pedersen R, Tribbia J (1995) Journal of the Atmospheric Sciences, 36: 764-

777. 
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Figure 7 Baroclinic energy conversion (Az  Ae) for four models. (A) Lowest-order, 

square wave solution for an Eady-type model but including compressibility, increasing 

vertical shear in U,  = 1. (B) Solution when a surface frontal zone, centered at Y = 0, is 

added to the lowest order mean flow U0 and leading ageostrophic advective effects are 

included (using geostrophic coordinates). The frontal zone adds wind field: 0.2(2z-z2) U1 

where U1 = b1(1 – tanh2(aY) – b2 – 3b3Y2 to U0. The geostrophic coordinate transform 

causes the asymmetry. (C) Correction to the conversion shown in (a) when barotropically 

unstable horizontal shear U1 is added to U0. If the total wind is U = U0 + U1 then the 

total conversion is (A) + (C). The barotropic shear reduces the growth rate. (D) 

Modification due to all leading order ageostrophic corrections. If those corrections are 

order , then the total conversion is (A) + (D). Ageostrophic conversions reduce the 

conversion and introduce asymmetry. Adapted with permission from Grotjahn, R., 1979: 

Journal of the Atmospheric Sciences, 36: 2049-2074. 
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Figure 8 Initial value calculations for a linearly localized initial condition. (A) Zonal 

cross section showing contours of streamfunction initially. Values < -1.0 are shaded. (B) 

Horizontal pattern of streamfunction at tropopause level (z = 1.0) initially. Initial 

condition constructed from neutral modes having similar phase speed. Growing or 

decaying normal modes are excluded. (C) Time series of energy growth rate for three 

integrations. Linear model (dotted line) showing little growth since the nonmodal 

mechanism is weak and growing normal modes cannot develop. Also shown are 

nonlinear calculations for two amplitudes of the initial condition, where the solid line 

uses three times the initial amplitude of the dot-dashed line. Growing normal modes are 

activated by nonlinear interaction. Some evidence of nonlinear saturation is seen. 



 33 

 

 

 

 

Keywords for MS 076:  

 

Ageostrophy 

 Effects on baroclinic development 

Baroclinic Instability 

Conversion 

 Interaction with barotropic instability 

 Necessary conditions for, 

Barotropic conversion 

Continuum modes 

Diabatic heating 

Energy: 

 Available potential 

 Conversions 

 Kinetic 

 Potential 

 Quasi-geostrophic 

Extratropical cyclones  

Instability 

 Absolute 

 Baroclinic 

 Barotropic 

 Convective 

 Global 

 Spatial 

 Temporal 



 34 

Nonmodal growth 

 Superposition mechanism 

 For higher-order equations 

 Quasi-geostrophic example 

Normal modes 

Observed: 

 Momentum flux 

 Heat flux 

 Global energy conversions 

Potential vorticity 

 From boundary temperature gradient 

 Interpretation of baroclinic instability 

 Inversion 

 Quasi-geostrophic 

Static stability 

 Effects on baroclinic instability 

“type B” cyclogenesis 

Vorticity 

 Absolute 

 Equation, observed 

 Relative 

 “Thermal” 

 


	1.2 AN ILLUSTRATIVE MODEL
	1.2.1 Mathematical formulation
	1.2.2 Example solutions

	1.4 POTENTIAL VORTICITY VIEW
	1.5 NORMAL MODES
	1.6 NONMODAL GROWTH
	Further Reading
	(Suggested cross-references)
	See also:
	Barotropic Flow and Barotropic Instability (0076). Cyclogenesis (0129). Cyclones: Extratropical cyclones (0128). Dynamic Meteorology: Balanced Flow (0484); Overview (0138); Potential Vorticity (0140); Waves and Instabilities (0141). Quasi-geostrophic ...

