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Ads/disads of EBVE

6(*

A advantages:

Looks formally like the BVE (3.6c¢)
which is easy to understand &
interp results of...

Could relate w to W (w= dp/dt,
hydrostatic eq. w~-pgW). This W
could come from (a) flow up and
down topography, or (b) frictional
sfc convergence or divergence

Sign of div correction term (RHS
of 6.6) helps slow down long
waves. These waves move too
fast (retrograde) in the BVE.

Related with this to Z—Z to see how

the term can be brouéht to the
LHS and included in the local
change of vort.

+ V- \7(( +f) =

(6.6)

B Limitations:

many approx’s used: QG
assmpt.: vert. variation
ignored by taking integral,
etc.

“*7 level assumed to be
fixed in space & time.

A(P) assumed not a
function of x, y, and t.

No turning of wind
allowed (isotherms and
Isohypes are paralleled.)
=2 no Temp advection
possible.






6.4 lllustrations of 500 mb steering

e “*”]evel is similar to the data on a 500 mb
map.

* “linearization”=separating the “perturbation”
of trough or ridge from its “environment”.
(skipping the linearization step, the Fjortoft
scheme described in Chapter 6.3, it is
sufficient for us to use the figs 6.4 and 6.5 to
illustrate the idea.)

Assess the scale of the feature 2 d=1/4L

b. Apply smoother to total field (=Z) which
removes the perturbation (scales similar to
4d & smaller)>Z_tilda

o

C. Identify a feature to be the “perturbation”
(Z_tilda-2)
d. Feature moves with geostrophic wind of the

environment (smoothed wind velocity),
Vg_tilda (k -V X Z_tilda)

In the case of,
1. beta = zero
2. considering beta effect

For a symmetric wave For an asymmetric wave



Asymmetry - the direction (meridional)
of system movement

a) Often seen along west
coast

b) Often seen in central
US

geoz ph Wi d pced
side of vortex
etluam:-rward of vortex




In real world... (Fig 6.6)
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Figure 6.6 (a) The 500 mb geopotential height field (full curves labeled in dam)
for 1200 GMT 19 September 1978. Absolute vorticity isopleths (units in
1% 10°*5=') are drawn as broken curves for values greater than or equal to
14 % 107% 57", (b) Same as (a) but for for 1200 GMT 20 September 1978.

Figure 6.6 (c) Same as (a) but for for 1200 GMT 21 September 1978, (d) Same as (3}
but for for 1200 GMT 22 September 1978. Dotted streamlines with circles denol
trajectories of positive vorticity centers at 24 h intervals.

a) rather symmetric
a)=2>b): red>blue
Rather zonal disp.

b) asymmetric
b)=>c): blue—> yellow

large northward disp.
of the system




Chapter 7 Baroclinic Development

e Barotropic models (BVE, EBVE): no turning of
wind w/ elevation = T advection is missing

e |ncluding the missing process (something
similar to T advection) with simple approx.

e Chapter 7.1 : the 2-parameter model (Baroclinie
Equivalent Barotropic Vorticity Equation, BEBVE)



BEBVE

e To allow wind turning simply...

e Assumptions: isotherms are oriented the same direction
at all levels. Thermal winds are independent to P. But,
magnitude varies with height (controlled by B(p)).

e Mean level, P_m

Vg = ng + B(p)Vy (7.1a)
(g — (gm + B(p){r (7.1b)

Define (in Fig 7.1a):
Vertical integral of B should be zero. R oinetes
B(p=1000hPa) =-1.0 at sfc

B(p=0) = 0.0 at upper lid

At sfc, B=-1
VT = Vm - VO (Figure 7.1b)




Thermal winds
Conventional (Holton) VS Chap. 7 (Carlson)

V="Vy+Vy V=V, +B(p)Vy(7.1a)
¢=¢o+r ¢{={m+ B(){r(7.1b)

Difference: the reference level (sfc VS mean(middle) level)
B(p) factor, V;and {r are function of p in Holton’s, while not in Carlson’s.

Conuﬁnjﬂlor\a\z (_‘_haP ’7 _2

(Holten) (Carlson)

Np0© /t:;-\fr
//‘\}} % Bro
[

.

7 9
\150///1{ V:I' \YS" / \r\rf:/ "
o7/ @

\/3%:{’3 Vr \\’%""/ / ecoT

x
Ay *2
Fig. 3 i i < V 7
- 38 Relationship between vertical shear of the geostrophic wind and horizontal —*w
fffffffffff gradients. (Note: 8p<0.)



Thermal winds
Conventional (Holton) VS Chap. 7 (Carlson)
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Case 1: No turning of Wind (isohypses and isotherms are paralleled.)

Case 2: turning case



Thermal winds
Conventional (Holton) VS Chap. 7 (Carlson)

p between turning of the geostrophic wind and temperature advection:
of the wind with height; (b)/veering of the wind with height.

e Lo Clockwise (CW)
Covv\‘l'tr Lloc_kw\'se

e (Case 2:turning case



Derivation of eq. 7.3 (BEBVE)

dt

Vg = ng + B(p)Vr (7.1a)
(g = (gm + B(p){r (7.1b)

1) Sub (7.1a) and (7.1b) into (3.6a)
2) Take pressure average

Tendency term:

_ 1 ps m W
—Psfo ( + B )dp
=lfg’sa(_md _fps &d

_%, (plsffsldp) azr( f”SBd )

Since, a;_;,, and —T are independent of pressure, —fps 1dp=1, and

D =294V, 0,(8g+ )= + ) 5= ~ fo 5= (3.6a)

Nonlinear term:

1 Ds
~ B, (Vi Vp8m*BVy * Vylin+Vim - Vi (BS)+BVr - Vi, (BSr)
+ Vi Vof + BVr -V, f)dp

1 Ps 1 Ps
=_f (Vm'Vp(m)dp +_f T'Vp(m)dp
F Jo F Jo
1 [Ps
o [ W BT dp
sJ0
1 Ds
+ 7 f (BVr - Vy(B3r))dp
sJ0
1 Ps 1 Ps
+—f (Vm-v,,f)dp+—f (BVy-V
P PS 0 PS 0 P
1 s s
= FJO (Vi Vyplm) dp + (Vr - VP(T)FJO B?dp
1 Ps
+Ff (Vi Vpf) dp
SYJ0

1 Ps
=V V,(m (=1 1d
V(6 + 1) (Pf p)
+B2(Vy-Vyir)

Vertical term: = f—ofps a0 =L (w; — wy) =
P; %0 Py



a(m . _ waS
?__Vm Vp((m_l'f) +

6{*

Similar to (6.6), == = =V, V,,({. +f)+f0 SAZ( )

The new term is a pOSSIble source or sink of mean vorticity,
“development” by Carlson.

How does the development term affect the tendency of Zeta_m?

{r < V?h « —h o —T (from hypsometric eq.)
then, 22 ~BZ(~V; - B, ()~ — B(=Vy - 7,T)
=» eventually, we check an analogy of temp. adv. is included in BEBVE.

Cold advection —Vr - I5,T < 0 means POS vor. Adv. =V - V,{r > 0, then
Zeta_m increases.

Warm advection —Vr - V,T > 0 means NEG vor. Adv. =V - ,{r <0,
then Zeta_m decreases
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V, =V +B(@)Vr(7.19)

BERBVE INTERPRE TA Tion)

Example 1
B(p)Vy = Vg —Vm

B(O)VT = Vo - Vm
B(200)Vy = V390 — Vi

At sfc, B=-1
VT = Vm - VO

{r x V2h « —h < =T




e Example 2

“x” circle: min. z = max. abs. vor.

“*” circle: min. h = max. thermal vor.
“+” circle: max. z = min. abs. vor.

“.” circle: max. h = min. thermal vor.
* Vy =isotherms

e V,, =isobars

Begve analtjsfgé s
e § o

- There are dipole patterns of
tendency at a tough & a ridge

- h and Z patterns are offset which is
a necessary condition for the system
“developing”.

Q. what if the patters are offset in
opposite way?



e Example 2

“x” circle: min. z = max. abs. vor.

“*” circle: min. h = max. thermal vor.
“+” circle: max. z = min. abs. vor.

“.” circle: max. h = min. thermal vor.
* Vy =isotherms

e V,, =isobars

Begve analtjsfgé s
e § o

- There are dipole patterns of
tendency at a tough & a ridge

- h and Z patterns are offset which is
a necessary condition for the system
“developing”

Q. what if the patters are offset in
opposite way? For the system
“decaying”




Figure 7.2

Solid: 1000-500 thickness
Dashed: SLP

Dotted: thermal vorticity

“*7 circle: max. thermal vor.

“x” circle: max. abs. vor.
(trough) at 500 mb

Figure 7.2 The 1000-500 mb thickness contours (full curves labeled in dam) and

sea-level pressure (broken curves in mb; 1000s digit omitted) with surl’acg fronts.
Relative geostrophic thermal vorticity of the 1000-500 mb thickness pattern s shmﬂl
by the dotted contours (at intervals of 4 x 10~ > $7 1) for 1200 GMT 4 January 198_;
(see Fig. 10.5). The location of the 1000-500 mb thermal vorticity maxm}u}:t :“
denoted by a circled asterisk and the location of the maximum absolute vorticity

500 mb is denoted by a circled cross.




Applications

. To apply directly to standard weather maps....
. Approximate form of (7.3) based on Carlson’s experience,

9m :
B0 Vo VG + ) + + 2% (7.3)

B?(p) = 0.2 is a good estimator IF applying at the 500 mb level and for smooth terrain (w;~0).
Table 6.1

From (7.3), vorticity tendencies at 500 mb,

9¢
"~ Vs - Uy (Ggs + f) (7.4a)
a¢ 0845
ais ~ Vs U (Ggs + f) = <_ai ) (3.6¢)
barotropic

ot at ) ,
barotropic

From BVE(3.6¢) and since { « V?Z « —Z, {; « V2h « —h,
9Zs (%

ot ot >barotropic

Empirical eq. using h=1000-500mb thickness, V; oo instead of Vr,

9Zs

T (7.4b)




Applications

BERBRVE INTERPCRE TA Tion)

. To apply directly to standard weather mg
. Approximate form of (7.3) based on Carls

m
%z_vm'vp((m'l'f)‘l'

B?(p) = 0.2 is a good estimator IF applying a
Table 6.1

From (7.3), vorticity tendencies at 500 mb,
ar —Vgs - Vp((gs + f)

a(gs
ERCRCC A (W),, .
arotropic

ot ot )barotropic

From BVE(3.6¢) and since { « V2Z « —Z, (
2 (2%)
ot ot barotropic VT

Empirical eq. using h=1000-500mb thickness, V; oo instead of Vr,

9Zs

T (7.4b)




Summary

v' Ads/disads of EBVE
- no temp. adv. Possible

v" lllustration of 500 mb steering
- Asymmetry & the direction of system movement

v' Comparing the formula of thermal winds in Holton’s & Carlson’s
- Looking at the same features despites of different formula

v Derivation of BEBVE
- Includes temp. adv. with turning winds in height

v" How affect does thermal adv. to local change of perturbation?

- More accurate estimation of local change of perturbation possible from
thermal advection

- Prediction from the snap shot of thermal adv, yay!
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