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ATM 150 - Fall 2003
Name:________________

Problem 8
A. (20 pts) A previous assignment demonstrated the basic procedure for integrating in time using the Arakawa Jacobian.  The Jacobian was linearized by specifying Ψ.  In this assignment you will integrate the nonlinear form of the barotropic vorticity equation:


∂ζ/∂t + J(Ψ,ζ) = 0
(1)

where J denotes a Jacobian operator, ζ(x,y,t) is the relative vorticity.  Stream function Ψ(x,y,t) is related to relative vorticity, ζ by the linear balance relation  which you can “invert” using SOR:


(2Ψ = ζ
(2)

In this problem you add a new subroutine that inverts the LaPlacian (2) to obtain stream function Ψ from relative vorticity ζ using SOR.  There are a few differences from before.

1. The zonal boundaries are periodic as in the linear barotropic vorticity equation problem. Your SOR routine must allow for zonal (x-direction) periodicity. 

2. Only stream function is specified at the start.  Use finite differences to calculate ζ(x,y,0).  At the meridional walls, where y=Y = ±1.5, use a one-sided difference for the meridional derivatives of Ψ and note that the zonal derivatives vanish there.  The stream function is to be given by:

Ψ(x,y,0) = 2.5 - tanh(2y)/tanh(3) + 1.2exp{- 4 ( μ2 + (y+.5)2 ) }*sin(3 μ)

where μ = x + y2
for -1.5 < y < 1.5  (3a)

Ψ(x,Y,0) = 2.5 - tanh(2Y)/tanh(3)
at the boundaries where  y = Y= ±1.5  (3b)

The ranges are: -1.5 ≤ x ≤ 4.5; -1.5 ≤ y ≤ 1.5; 0.≤ t ≤ 1.5  Use resolution 81 points in x and 41 pts in y. For this number of grid points, the time interval must be small; I had success using Δt = 0.01, making the program run 150 time steps.  

Your program structure: 

(a) Calculate the Jacobian using the Arakawa scheme in a subroutine.  Note that the special conditions of this problem mean J is not evaluated along  y = Y.  So, you do not evaluate the vortiticty equation along those boundaires.  Ensure that your vortiticy field is a constant along each y = Y boundary, perhaps by setting each point to the zonal average of what the finite difference of ψ at t=0 obtains. 

(b) Calculate the stream function at each time step using successive over-relaxation (SOR) in another subroutine.  Make the maximum correction to Ψ be less than 0.0002. 

Output requirements: 

(1) Make contour plots of the relative vorticity at the start and at intervals of 0.5 units of time.  

(2) Plot the stream function contours at the start and at intervals of 0.5 units of time as well.  Make these 2-D plots from a separate subroutine.  

(3) Print out the 2-D average enstrophy and 2-D average squared stream function (similar to kinetic energy) and the time step number at each time step.  Enstrophy is just vorticity squared.  These quantities should be very nearly conserved.

(4)  Turn in a listing file of your program.

B. Consider the Lax-Wendroff scheme applied to the 1-D advection equation using 2nd order CIS for the space derivative. The Lax-Wendroff scheme is applied at integer time levels but defined as:


F*(n+1/2)m+1/2 = (1/2){Fnm+1 + Fnm } – (C (t/(2(x)){ Fnm+1 - Fnm }

-- predictor

Fn+1m =  Fnm  – (C (t/(x){ F*(n+1/2)m+1/2 – F*(n+1/2)m-1/2 }


-- corrector
(5 pts) Derive the linear stability condition for this iterative scheme.

(3 pts extra credit) Derive the group velocity for this scheme.

(2 pts extra credit) Plot the ratio of Lax-Wendroff group velocity over correct group velocity.

Due 26 November at the start of class.

