1. Isentropic mass weighted view versus a simple zonal average.

Let a perturbation pressure field be defined as: $P' = sin(y)\{(1-z)cos(x) - Qzsin(x)\} - Syz$ Assume these quasi-geostrophic assumptions apply:

 $\theta' = \partial P'/\partial z$ $v' = \partial P'/\partial x$ where primes denote nondimensional perturbations dimensional (total) values are given by:

 $\theta = \theta_s (1 + C * \theta')$ $P = P_s (1 + C * P')$ v = 10 v' (in m/s) Z = z * 10 kmThe subscript "s" denotes a static state (dimensional) which is isothermal with temperature $T_s = 260 K$. The surface pressure is $P_s (0) = 1.e+5$ Pa. C=0.02. Q=4. S=1. And scale height H (=RT_s /g) is constant.

a. (2 pts) Derive the formula for θ_s as a function of H, T_s, z and κ (where $\kappa = R/C_p$). P_s should not be in your final formula. Hint: P_s = P_s (0) exp(-Z/H) where if this Z is in km, then so must be H. Hint: you can check your answer: θ s=265K is about 500m and θ s=364 is about 9km.

b. (4 pts) Derive the formulae for v' and θ ' as general functions of (x, y, z).

c. (10 pts) Make contour plots of: P', v', and θ ' for z=0 and for y = (0, π) and x = (0, 2 π). Do the same for Z=9km (z =0.9). Use 21 pts in x range; 11 pts in y range. What is the value of H? These plots have P', θ ', v' consistent with a developing baroclinic wave and geostrophic meridional wind. Discuss: a) P' trough location changes with height, b) where in x are: the coldest air, the upper trough, and lower trough centered, and c) which level has larger v' θ '.

d. (2 pts) Calculate a zonal average of v' at (y, z) =($\pi/2, 0.9$). You may solve this numerically using the 20 grid points in the zonal direction. Trapezoidal rule is ok. You can assume that the domain is periodic. Hint: don't double count the end point.

e. (4 pts) Derive the formula for the height of a potential temperature surface θ_0 . Test out your formula by plotting the height of the q=265K surface for x = (0, 2 π) and y = (0, π). Hint: your plot should look similar to fig. 3.18 if that figure ranged from -1 to 5 km (instead of 0-10 km).

f. (8 pts) Plot v' for θ =265K and θ =364K surfaces. Set the v'=0 for any point that is underground (i.e. having elevation <0).

g. (10 pts) Calculate 2 mass-weighted zonal averages at $y=\pi/2$ of v': one on the q=265K surface and one on the $\theta=364$ K. A simple mass weighting starts with the z value at each grid point of the θ surface.. Next find the P_s of each z value, next multiply the v' value by the P_s value sum the corresponding values and call that the v'P_s sum. Next calculate the corresponding sum for the Ps values of the grid points used. Finally divide the v'P_s sum by the Ps sum. Note: **do not include any points in either sum that are underground**. These upper and lower elevation massweighted averages will be consistent in sign with the poleward extension of a Hadley cell seen in θ coordinates. Include a labeled table of these z, P_s, and v'*P_s values for each θ surface

NOTE: all homework is to be done by you as an INDIVIDUAL: no 'group' efforts, please. For written answers, please use a word processor, so that penmanship is not an issue. Equations and derivations can be *neatly* hand-written. Full credit requires proper units be included. Any table or plot must be completely and unambiguously labeled, including title and axes. Show ALL math steps.