Appendix **B**

Acronyms, Symbols, and Constant Values

Purpose: Defines acronyms and symbols used throughout the book. Where relevant, the value of the constant is provided

Commented [01]: Missing the many acronyms from the reanalysis data sources. See those tables in chapter 2. Such as AIREP, ACARS, AMDAR, ASDAR, TAO, TRITON, PAOBs, beta, cap U, k_sub beta, GPS/MET, LIMS, TCPW, RMS, See website list at bottom of table 2.1, WMO, more in Table 2.3 and 2.4

A	available potential energy	
Albd	planetary albedo	
Albd_c	planetary albedo (cloudy)	
Albd_nc	planetary albedo (clear, no cloud)	
AEF	atmospheric total energy flux	
AMIP	Atmospheric model intercomparison project	
ASHF	atmospheric sensible heat flux	
amc	angular momentum conserving	
ал	absorptivity at electromagnetic wavelength Λ	
asA	shortwave absorptivity of 'glass' atmosphere	
asg	shortwave absorptivity of ground	
a _{LA}	longwave absorptivity of 'glass' atmosphere	
alg	longwave absorptivity of ground	
BEBVE	baroclinic equivalent barotropic vorticity equation	
C_{Ev}	bulk transfer coefficient for evaporation (similar magnitude as C_{Ht})	
C _{Ht}	bulk transfer coefficient for heat $(1 \times 10^{-3} \text{ to } 5 \times 10^{-3} \text{ , unitless})$	
Cp	specific heat of dry air at constant pressure, $= 1004 \text{ J K}^{-1} \text{ kg}^{-1}$	
C_{sd}	specific heat estimate for dry soil, ~800 J K ⁻¹ kg ⁻¹	
C _{sw}	specific heat estimate for wet soil, ~1500 J/(kgK)	
Cv	specific heat of dry air at constant volume, $= 717 \text{ J K}^{-1} \text{ kg}^{-1}$	
C_w	specific heat for water, ~4200 J K ⁻¹ kg ⁻¹ varies with temperature. This value for T~280K	
CTW	cloud-track winds	
c	speed of light (3 x 10^8 m/s)	
c _B	Boltzmann constant (1.38 x 10 ⁻²³ J/K)	
cd	drag coefficient ($3x10^{-3}$ over land, 10^{-3} over ocean; see surface stress, τ)	
Ch	Planck constant (6.625 x 10 ⁻³⁴ Js)	
D	divergence	
DT	total diabatic heating rate per unit mass, $= D_J / C_p$ (units K/s)	
DJ	total diabatic heating rate in units J s^{-1} kg ⁻¹ (see C.3)	
D _{NM}	diabatic heating rate from processes other than net changes of water state (K/s units)	Commented [RG2]: Consider using D instead of C
DOE	(U.S.) Department of Energy	
DSE	dry static energy (per unit mass), = $C_pT+\Phi$	

dX	distance (path length) increment		
dω	solid angle incremento		
ECMWF	European Centre for Medium-range Weather Forecasts		
ERA-40	ECMWF 40 year reanalysis datasets		
ERA-Inter	im ECMWF reanalysis dataset successor to ERA-40		
$E_{\rm w}$	evaporation of liquid water		
E	radiance		
Eei	diffuse radiance emitted by a layer, also Ee		
EI	incident irradiance		
E_I^{ω}	average intensity that reaches an atmospheric layer		
E	radiance from laver i		
E.	radiance (at wavelength Λ)	1	Commented [RG3]: Reserve 'E' for radiance instead of 'e'
ENSO	el Niño – Southern Oscillation	- (
P	vanor pressure		
e.	saturation vanor pressure		
F	friction		
I Faa	fraction of sky covered by cloud		
Fr Er	Froude number $= (IL typical value)/(gH)$		
f	Coriolis parameter = $20 \sin \omega$		
f.	constant value of Coriolis parameter at latitude $\omega_{\rm c} = 20 \sin \omega_{\rm c}$		
10 α	acceleration of gravity -9.81 m s^{-2}		
s h	elevation Montgomery Stream function geopotential (See appendix C)		
ц	scale height $-\mathbf{PT}/\mathbf{q}$ where T has usually been averaged in some way		
HCBE	by notherical houndary between atmospheric regions where Hadley Cells dominate		
IICDE	versus baroclinic eddies.		
H_L	Sunrise or sunset (in radians) relative to local noon, such that $2H_L$ = the length of daylight (in radians)		
i	square root of -1		
i	(bold) unit vector pointing eastwards		
Ī	irradiance (over all wavelengths)		
Γ	irradiance from atmosphere in glass slab model		
IF	net vertical flux of radiant energy		
Ic	irradiance from ground in radiative models		
I;	irradiance from laver i		
IIN	irradiance input into glass slab model		
Io	incident solar radiation at the TOA		
Is	annual and global average solar radiation spread over the Earth $(=I_{Sol}/4)$		
Isol	solar constant (1356-1370 Wm ⁻² , 1365 generally used here)		
I sol	solar radiation at the TOA incident upon a latitude averaged over a day		Commented [RG4]: This might be the same as Q _{Sol}
<u></u> .	irradiance (at wavelength Λ)		Commented [RG5]: Try I for irradiance instead of 'E'
ISCCP	International Satellite Cloud Climatology Project	- (
ICZ	intertropical convergence zone		
K	kinetic energy		
i	laver index		
i	(bold) unit vector pointing northwards		
J k	(bold) unit vector pointing locally outwards (i.e. 'unwards')		
	(cond) and rector pointing rotary outwards (i.e. apwards)		

ka	mass extinction coefficient for absorber a
k _H	horizontal viscosity coefficient for second order friction
k _R	viscosity coefficient for Rayleigh friction
kz	vertical viscosity coefficient for second order friction
kβ	transitional wavenumber for jets versus eddies
L	latent heat of vanorization $-2.5 \times 10^6 \text{ J km}^{-1}$ at 0 C
	latent heat on vaporization, - 2.5×10 J kg at 0 C.
	latent heat energy
	latent heating (from any phase change of water)
LHF	latent heat flux
LHS	left hand side (of an equation)
lw	longwave (radiation) (~5 to 200 μm wavelength)
lw_t	total longwave radiation from the Earth (atmosphere + surface contributions)
Μ	angular momentum per unit mass, $=R_c (R_c \Omega + u)$
Ņ	angular momentum, = $\rho R_c (R_c \Omega + u)$
MMC	zonal and time mean meridional cell(s)
MSE	moist static energy (ner unit mass) $-C T + \Phi + I q$
N	moist state energy (per unit mass), $-C_{p1}+\Phi+Lq$
N N ²	Brunt-Väisälä frequency (squared) = $\frac{g}{2} \left(\frac{\partial \theta_s}{\partial s} \right)$ in height coordinates for an ideal gas
	$\theta_s(\partial z) = \theta_s(\partial z)$
NCEP	(U.S.) National Centers for Environmental Prediction
NDRA2	NCEP-DOE (AMIP-II) reanalysis datasets
NHem	Northern Hemisphere
NRC	Net radiative cooling
nr f	TOA net radiation (sw. $t - lw. t$)
0	ontical denth of absorber a
O _a	optical depth of absorber a through whole depth of the atmosphere
	optical deput of absorber a through whole deput of the atmosphere
ОПГ	oceanic neat nux
р	pressure
$\mathbf{p}_{\mathbf{oo}}$	reference pressure, typically set to 10 ⁵ Pa
PDO	Pacific Decadal Oscillation
PGF	pressure gradient force
psfc	surface pressure
P_w	precipitation of any solid or liquid form of water
Q_E	potential vorticity in isentropic coordinates (see C.49)
Oog	guasi-geostrophic potential vorticity (see C.47)
Oogy	meridional gradient of quasi-geostrophic potential vorticity
A for	$\tilde{\mathcal{F}} \perp f$
Qswe	shallow water equations potential vorticity, $=\frac{\varsigma_g + J}{\tilde{h}}$
QG	quasi-geostrophic
Q _{sol}	daily total solar insolation
q	specific humidity
d _{sat} (T _C)	saturation specific humidity for temperature T_{G}
Toto	specific humidity measured at surface instrument height
R	gas constant for dry air $-287 \text{ J K}^{-1} \text{ kg}^{-1}$
D	gas constant for water water $= 461 \text{ J K}^{-1} \text{ kg}^{-1}$
κ _ν D	gas constant for water vapor, = 401 J K kg
Kc	$r \cos(\phi)$

Ro	Rossby number, $=U/f_0L_s$, where U and L_s are speed and horizontal length scales.	
r	mean radius of the solid earth, 6370 km	
RCE	radiative convective equilibrium	
RHS	right hand side (of an equation)	
RMS	root mean square	
S	south	
Sa	enthalpy, $= C_p T$	
So	entropy, $dS_0 = C_p dln(\theta)$	
SR	Rossby wave source	
SH	heating by sensible heat flux	
SHem	Southern Hemisphere	
SHF	sensible heat flux	
SLHF	surface latent heat flux	
SLP	sea level pressure	
SPCZ	South Pacific convergence zone	
SSHE	surface sensible heat flux	
sw	shortwave (radiation) (~ 0.4 to 5 µm wavelength)	
sw a	shortwave radiation absorbed by the atmosphere	
sw s	shortwave radiation absorbed by the Earth's surface	
sw_t	shortwave radiation absorbed by atmosphere and surface	
SWE	shallow water equations	
T	temperature	
T _A	atmospheric temperature	
Tc	surface temperature	
T _m	skin temperature of atmosphere (radiative models)	
T sa Tofo	'surface' air temperature (at surface instrument height of 2m or 10m)	
TE	total energy (per unit mass) = $MSE+K$	
Th	thickness (between two isobaric surfaces)	
THC	global oceanic thermohaline circulation	
TOA	ton of atmosphere	
t	time	
Uame	a zonal wind component conserving angular momentum	
Ue	wind speed	
11	zonal component of the wind	
Uag	zonal component of the ageostrophic wind. $= u - u_{\alpha}$	
ug		
ug	zonal component of the geostrophic wind, $= -\frac{1}{f \partial y}$ in pressure coordinates	
V	vector wind, 3 dimensional unless otherwise stated	
$\mathbf{V_g}$	geostrophic wind vector, 2 dimensional	
V_{gm}	vertical (pressure) average geostrophic wind vector, 2 dimensional	
v	meridional component of the wind	
Vag	meridional component of the ageostrophic wind, $= v - v_g$	
Vg	meridional component of the geostrophic wind, $=\frac{1}{f}\frac{\partial Z}{\partial x}$ in pressure coordinates	
$[v_R]$	meridional component of the zonal average residual circulation	
w	vertical velocity in height coordinates	

w _c , w _s W _d WBC X X Z	vertical velocity in cloudy, sinking regions (of tropics) mixing ratio, equivalent to saturation mixing ratio at dewpoint temperature western boundary current distance longitudinal distance (depends on coordinate system) geopotential height	
Z	elevation independent variable	
Za	length	
α	specific volume, = $1/\rho$	
$\alpha_{\rm v}$	specific volume for water vapor, = 1/e	Commented [RG6]: What to do about absorptivity versus
β	meridional derivative of the Coriolis parameter	specific volume?
Г	lapse rate $(= -\partial I/\partial z)$	
Id Г	dry adiabatic lapse rate (= g/C_p) moist (or saturation) adiabatic lapse rate	
1 m δ	solar declination angle (Chan 3 homework)	
E 4	emissivity?	
Ef	efficiency factor?	Commented [RG7]: Emissivity versus efficiency factor?
ζ	vertical component of relative vorticity, $= \vec{k} \cdot \vec{\nabla} \times \vec{V} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$	
ζa	vertical component of absolute vorticity, $= \zeta + f$	
$\tilde{\zeta}_{ay}$	meridional gradient of vertical component of absolute vorticity	
ζ	three dimensional vorticity, $= \vec{\nabla} \times \vec{V}$	
θ	potential temperature	
θ_e	equivalent potential temperature	
Λ	wavelength of electromagnetic radiation	
λ	longitude or azimuth based on context	
μ	$=\sin(\varphi)$	
ρ	density	
ρa	density of absorber $10^3 \ln (m^3)$	
ρ_{w}	density of fresh water. = 10^{-6} Kg/m ⁻	
σ	Stefan-Boltzmann constant, = $(2\pi^{*}c_{B}^{*})/(15c^{*}c_{h}^{*})=5.6/\times10^{*}$ W m [*] K	
τ	surface stress by wind	
τλ	surface stress in zonal direction (= $\rho c_d V u$)	
υΛ	electromagnetic frequency at wavelength Λ	
Ωõ	angular rotation rate of the earth, 7.292×10^{-5} rad/sec (hold or with arrow) angular rotation vector for the earth $-(0i \ 0 \cos(a) i \ 0 \sin(a))$	
52, 12	(both of with arrow) angular rotation vector for the earth, $= (0, 1, 22\cos(\phi), \mathbf{j}, 22\sin(\phi), \mathbf{k})$ k)	
ω	(vertical) pressure velocity. $\omega = dP/dt$	
ωD D	(vertical) pressure component of the zonal average residual circulation	
Φ	σ geopotential $d\Phi = \sigma dz = -RTdn/n$ (for hydrostatic balance)	
۰ ۵	latitude or zenith angle based on context	
χ	velocity potential (in two dimensions)	
$\tilde{\Psi}$ or ψ	stream function (in two dimensions)	
	5	

б