
Appendix D  
 
Fundamental Radiation Concepts 
 
Purposes: Provide foundation concepts and equations as a starting place for discussions of 
radiation in the book.  
 
 
Atmospheric radiation is expressed using radiance (E) and irradiance (I).  I is the total amount of 
radiant energy actually passing through (or arriving at) an area.  E is the amount of I passing 
through (or arriving at) an area in (from) a particular direction. Hence, I and E are related by 
geometry. Radiance units are usually energy/(unit time x unit area x unit solid angle for a 
wavelength) so E has units W/(m2 sr) where sr is steradians. The relation to irradiance depends 
on whether radiance varies with direction, and how many directions the radiation is occurring. 
For emission from a plane (parallel) surface, the emission would be in all directions of a 
hemisphere. Both radiance and irradiance units depend on whether the energy flux is expressed 
for a single electromagnetic spectrum wavelength (Λ) or integrated over all such wavelengths; in 
the latter case, the units are usually W/m2. 
 To relate radiance and irradiance, note that I arriving at a unit area on a horizontal plane 
is the total radiant energy normal to the unit area of the plane.  See figure D.1.  To calculate I 
requires a cosφ factor (explained in a moment) where φ is the zenith angle.  Thus: 
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oI  E( , ) cos  dπ ϕ λ ϕ ω= ∫  (D.1) 
 
The unit solid angle is related to changes in azimuth (dλ) and zenith angle (dφ) by 
 
 d   sin  d   d            ω ϕ λ ϕ=  (D.2)  
 
where the sinφ factor arises from "convergence of meridians" on a sphere. Combining (D.1) with 
(D.2) gives 
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Note that (D.3) is for radiation over one hemisphere only.  Examples include radiation reaching 
the ground from: infra-red emission by the atmosphere, or scattering of solar radiation by the 
atmosphere.  In some problems, one wants the radiation from the whole sphere: an example 
would be the radiation absorbed by a volume of air, where the radiation comes from above and 
below; however, it is common to still use hemispheres and separate the radiation coming from 
below (‘up’) from that coming from above (‘down’). 
 If the radiation is isotropic (constant in all directions) then E is independent of λ and ϕ; E 
can be brought outside the integral in (D.3).  The result is (D.3) reduces to I = πE.  In Figure D.1 
this is the irradiance in the downward direction. Since E is isotropic, the radiant energy passing 
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through any solid angle dω1 equals the energy passing through any other solid angle dω2 of the 
same size.     
 The cosϕ factor in (D.1) is explained as follows. Figure D.2 shows isotropic radiance 
from an infinite plane reaching a hemisphere below. The flux through each unit solid angle dω1 
and dω2 is the same because the radiance is isotropic. Those solid angles are oriented 
perpendicular to the radiation from any direction ϕ but a horizontal surface is not perpendicular 
to the radiation from any direction except the direction perpendicular to that surface (ϕ=0). In 
Figure D.2 the emitting areas A1 and A2 that emit radiant energy towards dω1 and dω2 are not 
equal areas. Instead, A2 = A1 / cos(φ) so a larger emitting area (A2) in figure D.2 is needed for 
the radiance striking the hemisphere to be isotropic. In terms of energy reaching a horizontal 
surface, energy approaching from a nearly horizontal angle (ϕ~π/2) has almost no amount 
perpendicular to the horizontal surface because radiation from that direction is nearly parallel to 
the horizontal surface. Hence, the radiance striking a horizontal surface from a particular 
direction ϕ will be proportional to the radiance E from that direction times cos(ϕ). Since the cosϕ 
factor is a result of the geometry, it also applies for non-isotropic radiation. 
 The relationship between I and E simplifies for parallel beam radiation. Solar radiation 
comes from a small solid angle dωm only, then the integral over dω is very small, too.  The 
integral over solid angle can be approximated numerically as a finite sum over many individually 
small solid angles, only one of which has the size and is in the direction of the Sun. For solar 
radiation, then the integral (D.1) reduces to: 
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Consequently, one can dispense with the solid angle integration and just use I to characterize 
direct solar radiation. However, terrestrial radiation (infra-red) and scattered solar radiation come 
from many angles and integration over solid angles and using radiance E are required.  
 Planck’s law of blackbody radiation defines the monochromatic radiance, EΛ (or spectral 
radiance) as the amount of radiant energy flux passing through a given area at a wavelength (Λ) 
of electromagnetic radiation for a given blackbody temperature (T) from a specific direction. The 
units of EΛ are commonly W/(sr m2 nm) where the length scale nm has scale similar to the 
wavelength of the radiation Λ. Planck’s law may be written 
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where T is the temperature of the black body emitter, lambda (Λ) is the wavelength of light, ch = 
6.625 x 10-34 Js is the Planck constant, c = 3 x 108 m/s is the speed of light, cB = 1.38 x 10-23 J/K 
is the Boltzmann constant.  
 Planck’s law contains two functions of Λ. As Λ becomes smaller, Λ5 decreases but the 
term in the curly brackets becomes larger more rapidly making (D.5) decrease to zero as Λ goes 
to zero. At very short wavelengths: for decreasing wavelength, the variation with wavelength in 
square brackets (which is decreasing) dominates the minus fifth power out front (which is 
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increasing). In that case the exponential is much larger than one and an approximate form of 
(D.5) is:  
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 (D.6) 

 
Relation (D.6) approximates Planck’s law well if chc >> cB Λ T. For very large values of Λ, both 
functions of Λ in the denominator of (D.6) become large and so EΛ again approaches zero. 
Therefore, (D.5) indicates that the irradiance must reach a maximum at some wavelength.  
 The location of the maximum is a function of temperature. Taking a derivative of (D.6) 
w.r.t. Λ and setting the result to zero obtains a wavelength Λm where the emission is a maximum 
for this approximation. The resultant linear relationship between temperature T and wavelength 
of maximum emission Λm is known as Wien’s law: 
 
 22.898 10mT K m−Λ = ×  (D.7) 
 
Wien’s law shows how the peak emission moves to a longer wavelength for a cooler temperature 
of the emitter.  
 Planck’s law also shows that the higher the temperature, the closer the argument of the 
exp function in (D.5) approaches zero, hence the curly brackets in (D.5) approaches zero, and the 
larger the values of EΛ at all wavenumbers.. 
 One can formulate Planck’s law using frequency by first noting that c = ΛυΛ where υΛ is 
the electromagnetic frequency at that wavelength. Since υΛ decreases when Λ increases an 
increment of radiance in wavelength is minus an increment in frequency, hence: 
 
 ( , ) ( , )E T d E T dυ υ υ

ΛΛ Λ ΛΛ Λ=−  (D.8) 
 
Rearranging (D.8) and evaluating 2/ /d d cυ υΛ Λ− Λ = obtains the alternate Planck’s law 
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Integrating (D.9) over all frequencies and over all solid angles finds the total irradiant power per 
unit area, after use of the identity 
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obtains the Stefan-Boltzmann law: 
 
 4I Tσ=  (D.11) 
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where I here is the total blackbody irradiance and 5 4 2 3 8 2 4(2 ) / (15 ) 5.67 10B hc c c W m Kσ π − − −= = × .  
 ‘Blackbody’ is a descriptive term to visualize the appearance of a ‘perfect’ emitter. 
According to (D.11), a ‘blackbody’ object emits I amount of radiant energy per unit area when it 
has temperature T. This ‘object’ can be many different things: atmospheric gas molecules, snow 
covered ground, ocean surface, etc. in our applications. However, not all objects are ‘perfect’ 
emitters.  
 The ability to emit radiation is measured by a parameter called the emissivity, εΛ . Where 
εΛ  ranges from 0 (unable to emit radiation at wavelength Λ) to 1 (maximum emission). 
Absorptivity (aΛ) is similar to emissivity except that it refers to the ability of that object to absorb 
radiation at wavelength Λ. Kirchhoff’s law states that aΛ= εΛ  . Hence, a good emitter is a good 
absorber at the same wavelength, similarly for poor emitter. εΛ can have quite different values 
for different wavelengths. For example, the absorptivity of clouds in visible light is low (for a 
thick cloud, εΛ  < ~0.2), but for infrared wavelengths it is much larger (for a thick cloud, εΛ  > 
~0.8).   
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Figure D.1 



 
 

 
 
Figure D.2 
 




