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No general circulation of the atmosphere without cyclones  
is dynamically possible when friction is taken into account  

 
Jeffreys, 1926 

 

Chapter 6 
Momentum and Static Energy 
 
______________________________________________________________________________ 
Purpose: This chapter tracks momentum and static energy in the atmosphere. The general 

circulation is foremost about motion. So, this chapter initiates the discussion of maintenance and 

tendency in the motion. This chapter examines momentum more deeply than in Chapter 1. 

Maintaining momentum is not a detail, but a key factor in determining the structure of Earth’s 

general circulation. In middle latitudes transient eddy fluxes dominate maintaining westerly 

momemtum broadly and even so-called “eddy-driven” jets; but not the climatological subtropical 

jet stream. That subtropical jet is linked to mean meridional overturning through the Coriolis 

term.  However, motions are linked to temperature through pressure forces and the interaction 

between heat and momentum is captured by analyzing energetics; those discussions are reserved 

for the next chapter.  

 

Heat flux was invoked for radiative balance and temperature discussions in Chapter 3, 

those fluxes arise here in the context of atmospheric energy. 

The etc. <<< abstract >>>  Before discussing energetics in detail, Also discussed are dry 

and moist static energies (DSE and MSE, respectively). And some global views of energetics 

beyond those seen in Chapter 3. 

 

6.1 Angular Momentum and Its Maintenance 

6.1.1 Angular momentum and angular velocity 

 Our starting point is to examine the absolute angular momentum ℳ of an air parcel. 

There are two reasons. First ℳ is conserved unless torques are applied to the parcel. Second, 

equations for ℳ link the atmosphere’s gross dynamics to those of the oceans and solid Earth. 

Three important forces for the atmosphere are gravity, pressure force, and friction. These forces 
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can create torques that may change the atmospheric angular momentum (AAM). When a parcel 

is moving, the momentum of its motion also includes the motion of the coordinate frame fixed 

with respect to the rotating Earth. Egger et al. (2007) have a more extensive review of the 

momentum balance including discussion of the central role of AAM in the general circulation. 

 Technically, ℳ has three components and traditionally, all point outwards from the 

Earth’s center. Two point outward through the equator (typically at 0 and 90 E). The third points 

outward through the North Pole and is labeled the “axial component”. The axial component is 

interchangeably labelled the “zonal component” here since only the zonal component of the wind 

contributes to it. For the other AAM components, meridional and zonal winds can contribute. 

These latter two components are sometimes called the equatorial AAM vector. Motions, 

particularly in the tropics can impact the two non-axial components. Major polar topography 

(Antarctica and Greenland) are particularly important (Feldstein, 2006) forcing of equatorial 

AAM vector phase and amplitude variations. However, the purposes of this discussion are 

adequately served by focusing on the axial component of the AAM. Only the axial component of 

ℳ is considered here. That is effectively the component about the axis of Earth’s rotation. The 

other two components are much smaller. ℳ has contributions from Earth’s rotation (labelled the 

“planetary” part) and from atmospheric winds (labelled the “wind” part). The planetary part of 

the axial component is three to four orders of magnitude larger than the other two planetary 

components. Similarly, the ‘wind’ part of the axial component is about 50 times larger than the 

corresponding other two components (Egger et al., 2007). Even if the atmosphere is at rest with 

respect to the Earth’s surface, it has angular momentum expressed by the “planetary” angular 

velocity term due to the Earth’s rotation. If the air parcel changes latitude, even when staying on 

a constant geopotential surface, then the parcel’s distance from the axis of rotation (= r cosφ) 

changes and this effect must be included in our equations. Figure 6.1 shows the geometry. 

 Aside from neglecting the other components, the atmosphere is assumed to be thin 

enough so that changes in the distance from the axis of rotation due to vertical motions are 

neglected. Also neglected is a “moisture torque” from the cycle of atmospheric water vapor 

(Egger, 2006). Finally, the Earth is assumed to be a sphere. 

 The symbol M designates the absolute angular velocity of a parcel. As noted, M has two 

parts because the coordinate system is fixed with respect to the earth and thus rotates.  

 2
c cM R R u= Ω+  (6.1) 
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where 

 coscR r φ=  

The first part is the planetary angular velocity while the second part is the velocity relative to the 

rotating coordinate system. The earth’s radius is r and φ is latitude; Ω is the angular speed of the 

Earth’s rotation; and u is zonal velocity (positive in the direction of earth’s motion). Appendix B 

has a complete list of variable designations.  

 Angular momentum ℳ equals ρM. Because density enters into the AAM, the budget for 

the stratosphere is small. On a time mean, the primary features are the jet streams (with ℳ 

maximum at lower elevation than the zonal wind max, e.g. Figure 4.13, due to the density 

weighting) and low level motions. While important for overall balance, the torques applied at the 

Earth’s surface are notable only in the lower half of the troposphere (Egger et al., 2007) whereas 

the upper troposphere and stratosphere momentum are dominated by transports by MMCs and 

eddies. 

 

6.1.2 Angular Momentum Tendency 

 The annual cycle is the largest contributor to variability of the AAM (Kang and Lau, 

1994) with nearly 4/5 of that variability due to seasonal variation of the jet streams. Global AAM 

is largest in mid-November and mid-April and least at the start of August (Egger et al., 2007). 

Other variability is associated with low frequency phenomena such as: ENSO (e.g. Black et al., 

1996), QBO (Chao, 1989), and MJO (e.g. Weickmann et al., 1997).  

 The rate of change of angular momentum depends on pressure forces along the zonal 

direction and friction acting on motion along that same direction. 

 0c c x
dM PR R F
dt x

ρ ∂
+ + =

∂
 (6.2) 

ρ is density, ∂P/∂x is the pressure gradient in the longitudinal dimension, and Fx is friction in the 

longitudinal direction x (defined with the same sign as M). One can derive a spherical 

coordinates form of this relationship (e,g, Ionescu-Kruse, 2022) but only a general insight is 

desired at this point. Similarly, the pressure gradient term above is simplified because the 

mechanical pressure in compressible fluids can differ from the thermodynamic pressure, p 

(White, 2006). The difference may be approximated by Stokes’ (1845) hypothesis. However, to 

avoid developing the greater complexity at the expense of clarity, Cartesian coordinates and 
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thermodynamic pressure are used here. Equation (6.2) is easily derived from the zonal velocity 

equation (e.g. C.26 in Appendix C); the Coriolis term is within the v ∂M/∂y term. 

 Expanding the total derivative in (6.2) yields: 

 3 3
( ) 0c c x

M PM R R F
t x

ρ ρ∂ ∂
+∇ ⋅ + + =

∂ ∂
V  (6.3) 

Integrating (6.3) over the volume of the atmosphere between latitude circles φ1 and φ2 while 

holding volume V constant obtains: 

 
1 2

1 2V V V
V V Vc c xS S

PMd Mv dxdz Mv dxdz R d R F d
t dx

ρ ρ ρ∂ ∂
= − − −

∂ ∫ ∫ ∫ ∫ ∫  (6.4) 

Here S1 equals the surface area of the “wall” at latitude circle φ1; S2 equals the surface area of the 

“wall” at latitude circle φ2; and vi equals meridional velocity directed positive into φi from the 

south. 

 Figure 6.2 illustrates the orientation. The only surface integrals obtained in (6.4) are those 

along the meridional boundary “walls.” No contribution comes from the longitudinal direction 

because the domain encircles the earth, i.e., because of the periodic boundary condition. While 

obstructions cause a non-zero contribution for the pressure gradient term, they cannot do so for 

the zonal velocity gradient term. Finally, the top and bottom boundaries make no contribution 

because the vertical velocity vanishes there. 

 The time derivative term is approximately zero when averaged over a year’s time. The 

time derivative can be ignored when dealing with long period problems of the general 

circulation. For a long-term average the friction term is cumulative and eventually becomes a 

large accumulation. Over the short term, the time derivative must be included but the friction 

term can be dropped. 

 The first three terms on the right-hand side of (6.4) are responsible for bringing angular 

momentum in (or out) of the volume. Both of the first two right-hand side terms in (6.4) can be 

rewritten. For example, by applying a time average to the first term and using the hydrostatic 

equation to make a change of independent variable, one obtains: 

 0 0

1

2

1 1 10 0

P Pc c
S t x t x t

R RMv dxdzdt v dtdxdP uv dtdxdP
g g

ρ Ω
= +∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫  (6.5) 

The flux has been split into two parts. One part is advection of planetary angular momentum 

(which includes a mass flux across the latitude circle). Using the shorthand notation developed in 
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Appendix A and applying it to both surface integrals, then one can write the first two terms on 

the RHS of (6.4):  

 
   2 2

1 0 2 0 1 0 2 0
1 2 1 1 2 2

(A) (B)

[ ] [ ] [ ] [ ]c c c cR L P R L P R L P R L Pv v u v u v
g g g g
τ τ τ τΩ Ω

− + −
 

 (6.6) 

In (6.6) subscripts have been added to Rc and u to make clear that these quantities are likely to be 

different at the two latitude ‘walls’. 

● Term (A) transfers planetary angular momentum through a net mass shift into or out of 

the volume, across latitudes φ1 and φ2. If the transfer is towards the closer pole (South or North) 

then the term is positive as the net motion is towards a location a shorter distance from the axis 

of rotation. For example, in the Southern Hemisphere, a net shift towards the South Pole has Rc1 

< Rc2 but the meridional velocities are negative leaving term (A) positive.  

● Term (B) is a northward flux of relative angular momentum that can be split into terms 

associated with simple categories of circulations (discussed in Appendix A). Again, the sign of 

the term depends on the net transfer into or out of the volume. For example, in the Northern 

Hemisphere, if 
 

1 1 1 2 2 2[ ] [ ]c cR u v R u v> then there is a net convergence of relative angular 

momentum in the volume. 

 

 The third term on the right-hand side of equation (6.4) is the pressure or “orographic” or 

“mountain” torque term. As discussed in Chapter 1, if the zonal integral goes completely around 

the earth, then 

 
0P dx

x
∂

=
∂∫  

and the term vanishes. However, if a mountain obstructs the circuit, then the integral takes the 

form: 

 2 1( )cR P P dydz−∫ ∫  (6.7) 

for P1 ≠ P2. 

 Figure 6.2b schematically illustrates the mountain torque. The integration is in the same 

direction as the earth’s rotation (West to East). If pressure is greater on the west side than on the 

east side of the mountain (P2 > P1), then atmospheric westerlies are slowed down which transfers 
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momentum to the Earth and thus Earth’s rotation is sped up. Naturally, the far greater mass of 

the earth causes the change in motion of the atmosphere to be far greater than that of the solid 

Earth. More precisely, it is said that easterly momentum is added to the atmosphere when P2 > 

P1.  

 The final term in (6.4) is the friction integral. It is useful to obtain an expression for “Fx”. 

To use molecular friction coefficients would be to greatly underestimate the magnitude of the 

actual frictional drag on the air. Instead, an analogy to molecular friction known as turbulent 

viscosity is used whereby the microscopic-scale molecular friction formulation is expressed in 

terms of macroscopic motions. The analogy proceeds by using a “mean free path” of a “blob” of 

air that is a similar concept to a mean free path of a molecule. The analogy is appropriate 

because the blobs have pressure forces acting on them that may be analogous to the collisions of 

molecules. One chooses an eddy coefficient of viscosity κE and assumes the processes involved 

are the same. For example, Fx might be defined 

 2
x EF κ u= ∇  (6.8) 

For molecular physics, the coefficient is a constant; here it is not. κE varies with the stability of 

the atmosphere, surface roughness, wind speed, etc. κE is very much bigger (a blob has billions 

of molecules) than the molecular coefficient, which refers to individual particles.  

 The friction integral is small in the free atmosphere, so the prime contribution is from the 

surface dissipation. Thus, the friction integral can be approximated in terms of stress tensors, τ 

 2 2V V

tan
V= c xy xyc xx c xz xz

c x

R τ τR τ R τ τR F d dxdydz
x y z r r

φ∂ ∂ ∂
− + + + + ∂ ∂ ∂ 

∫ ∫  (6.9) 

The subscripts of the tensors denote components, not derivatives. In the x direction, for example 

 2
E u    

where τ = (τxx, τxv, τxz) and the “∇” operator above is three-dimensional. The stress tensor can be 

thought of as stresses applied to the sides of a small cube. The first subscript denotes the 

direction of the motion that is affected (in this case x, because momentum M depends upon u). 

The second subscript denotes the direction of the axis normal to the given face of the cube. 

Hence, τxx is the pressure force in the x direction, whereas τxz is a stress caused by vertical shear 

of motion in the x direction. (See Figure 6.3). One expects the frictional interaction with the 

ground to exceed the internal atmospheric friction, so τxz will dominate in the surface boundary 
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layer. If the horizontal components of τ are ignored, then the vertical integral in (6.9) reduces to 

evaluating the stress tensor at the earth’s surface. 

 
0 0

0 0
0 0V

Vc x c x zx y
R F d R dy dxτ≈−∫ ∫ ∫  (6.10) 

Stanton (1911) introduced the concept of a drag coefficient and Taylor (1916) suggested that 

stress be proportional to velocity squared. An approximate formula for the vertical stress tensor 

component may be defined as:   

 
0 0

2 2
0 0 0 0x y u u v    (6.11) 

where μM ~ 4 x 10 –3 and has no units. Using Error! Reference source not found. to 

approximate the friction force yields: 

 
0 0

2 2
0 0 0 0 0 0V

Vc x cx y
R F d R u u v dy dx     (6.12) 

where the subscript zero refers to values measured at standard anemometer height. The surface 

stress is always dissipating atmospheric motion, but the right-hand side of 

Error! Reference source not found. can be positive. Friction can increase M if the surface 

winds are easterly (uo < 0). Since the main contributor to the friction torque is from stress applied 

at the Earth’s surface, then the sign of this term should largely agree with the sign of the surface 

zonal wind. Hence, friction slowing down surface westerlies has negative value while slowing 

down easterlies is positive since friction is ‘adding’ westerly momentum to those easterlies. 

 A torque upon the zonal flow can be created when sub-grid scale gravity waves break and 

dissipate. Since the gravity wave breaking causes a drag, one might include it in a general 

concept of frictional dissipation. McFarlane (1987) reviews development of the concept and 

discusses formulation and calculation.  

 Huang and Weikmann (2008) discuss several ways to calculate the mountain torque from 

gridded data. But first, one can anticipate some broad properties of this torque from SLP maps. 

The sign of the mountain torque is negative for higher pressure on the west side and lower 

pressure on the east side of a North-South oriented mountain range. Negative sign opposes 

westerlies or reinforces easterlies. The mountain torque is generally negative in NHem and 

SHem middle latitudes. Because the Andes are the dominant mountain range in the SHem 

midlatitudes, one can easily anticipate the negative mountain torque there from Figure 4.4. The 

subtropical high off the west coast is coupled with lower pressure east of the Andes. Similarly, a 
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negative mountain torque can be created is via a persistent lee-side (East side) trough for 

westerly flow blowing over a North-South oriented mountain range, such as the Rockies. In the 

tropics, positive values of mountain torque occur which implies higher pressure to the East side 

and lower on the West side of topographic features. Positive tropical values of mountain torque 

are apparent in SLP values straddling the eastern African highlands (~15N in Figure 4.4a during 

DJF and ~15S in Figure 4.4c during JJA). 

 Water vapor is generally ignored in AAM tendency because the vapor is generally a 

small percentage of the total atmospheric mass. However, water vapor can be producing a torque 

due to the transport of water out of the subtropics towards higher and lower latitudes; Egger 

(2006) estimates this torque to have a magnitude of ~1 Hadley. 

 

6.1.3 Estimated Tendency Values 

 Zonal and time mean: mountain, friction, and gravity wave drag torques are shown in 

Figure 6.4. The figure (redrawn from Huang, et al., 1999) also compares data from Newton 

(1972; shown in Grotjahn 1993) with a modern reanalysis. The seasonal friction and mountain 

torques may be compared with Figure 6.5a,b where those torques are discussed more fully. The 

annual mean frictional torque (Figure 6.4c) is largely as one expects from surface winds that are 

easterly between ~30 S and ~30 N with peak values near 15 S and 15 N. The midlatitude 

westerlies have large negative values. Annual average values are stronger in the SHem due to the 

greater ocean coverage (Figure 1.1) in the tropics and less seasonal change in the midlatitudes. 

(Ocean areas tend to have stronger surface wind speeds as implied by Figure 6.6.) Gravity wave 

drag torque appears smaller (or at least more localized) than the frictional torque (Gong et al., 

2019) for the troposphere and lower stratosphere, but it is likely much more important in the 

mesosphere (Holton, 1982). In Figure 6.4d the gravity wave drag is largest between about 25 N 

to 50 N during DJF, negligible during JJA when the annual mean is similar to DJF but halved in 

magnitude. 

 The spherical coordinates form of the angular momentum tendency equation can be 

found in various sources. The equation in isobaric coordinates and for angular momentum per 

unit mass (i.e. the absolute angular velocity) can be found in Karoly et al. (1998) and is 

reproduced here: 
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  (6.13) 

The subscript λ on τ indicates the zonal component of the stress tensor. One notable difference 

from (6.3) is the additional cosφ factors in the horizontal and vertical flux terms. Because cosφ 

decreases towards each pole, the terms inside the meridional derivative (such as the group 

labelled ‘Ruv’) decrease more rapidly towards the poles than in (6.3). The form (6.13) was used 

for Figure 6.5. However, the tendency term and the two pressure derivative terms in (6.13) were 

not directly calculated by Karoly et al. (1998). The pressure derivative term on the RHS vanishes 

by presenting vertical integrals of this equation. Unlike the previous figure, the friction term in 

Figure 6.5 is defined as a residual from calculating the remaining terms on the RHS and 

presumed to be mainly from torque due to surface stress. Vertical integrals of the remaining 

terms on the RHS of (6.13) are shown in Figure 6.5a,b. Note that the middle term in Ruv includes 

all transients, eddy and zonal mean; but Karoly et al. call this quantity by its primary contributor, 

transient eddies; that approximate labelling is adopted here.   

 The estimates of friction in Figures 6.4a,b and 6.5a,b have broad agreement. The patterns 

are similar to the annual average data of Figure 6.4c, with two obvious seasonal modifications: 

stronger values in the winter hemisphere middle latitude westerlies and the tropical peak values 

linked to the winter hemisphere Hadley cell. A closer look reveals notable differences. During 

DJF, the midlatitude friction peaks near 45 S in Figure 6.4a, while the JFM residual peaks near 

50 S in Figure 6.5a. The DJF SHem tropical max has a single peak near 25 S whereas the JFM 

residual has peaks near 35 S and 25 S. During NHem winter, the peak positive is near 12 N and 

similar magnitude in both calculations. The NHem midlatitude extreme in friction is near 35N in 

both datasets and almost twice as strong in the residual calculation. With the exception of 15 S, 

the older data (Newton, 1972) agrees well with Huang et al. (1999). The SHem wintertime 

midlatitude values (Figures 6.4b and 6.5b) are very similar in location and magnitude in both 

figures; compared to summer, the friction reaches similar peak value but the peak is much 

broader and negative values spread over adjacent latitudes. The SHem winter Hadley cell peak 

near 15 S is about 20% larger in Huang et al. than in the residual calculation. Other relative 
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extrema are similar in both figures with some peak values slightly larger in the residual than in 

the direct estimates shown in Figures 6.5b and 6.4b, respectively. Though different years and 

datasets are used, the sign of the friction in Figure 6.4a,b match well the surface winds in Figure 

4.13. Negative friction values from ~67 S to ~35 S and ~30 N to 60 N in Figure 6.4a match well 

surface westerlies Figure 4.13a during DJF. Similarly for JJA, negative friction from ~65 S to 

~30 S and ~35 N to ~65 N are consistent with Figure 4.13b. Positive friction is found for most 

latitudes in between (except ~5 N to ~15 N during JJA) matching expectations from Figure 4.13.  

 The annual cycle of friction torque peaks (negative) during Austral late winter; but when 

combined with gravity wave drag (GWD) estimates, the combined torques are more comparable 

in Boreal and Austral winters (Egger et al., 2007; their Fig 5). 

 The mountain torque term in Figures 6.4a,b,c and 6.5a,b is generally: i) the same sign and 

ii) smaller amplitude than the friction term. This fact could be exploited to approximate the 

mountain torque in a calculation by boosting the friction – however, the amount of boost would 

vary with latitude and season, and the amount would approach doubling at a few places (e.g. 25N 

during DJF). Lorenz (1967) felt that this sign matching was fortuitous, and indeed there are 

regions where the signs differ (~15 N to ~20 N and ~35 N to ~40N during JAS; ~30 S to ~40 S 

during JFM). Though generally smaller in magnitude than the friction term, there are exceptions 

where the mountain torque is: a) comparable to the friction residual (~45N to ~55N, both 

seasons) and larger than the friction and largely opposing the horizontal transport: ~65N to 75N 

during JFM and ~10N to ~15N and ~30N to ~40N during JAS. Tropical values generally have 

larger peak mountain torques in the winter hemisphere with similar magnitude in both 

calculations. Middle latitude mountain torque values are generally larger in the NHem and 

slightly larger in the residual calculation. The older data shown (from Newton, 1972) generally 

agree well with more modern data. The mountain torque peaks in Boreal fall and Boreal spring 

(positive peak values) but the unresolved topography in the reanalysis data are assigned to GWD 

which is often large and negative (Egger, 2007). (Convection and other imbalances also 

contribute to the GWD term.)   

 The figures here show multi-decade time average values of the mountain torque. This 

torque has large swings (including sign) on shorter time scales (e.g. daily values). It seems 

generally true that friction operates on a longer time scale than the mountain torque. Egger et al. 

(2007) use lagged covariance to show peak M following about 3 days after a peak (positive) 
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mountain torque anomaly, while peak M follows 15-20 days after a peak (positive) friction 

anomaly; the autocorrelation decays much more slowly for friction than mountain torque as well. 

While friction has more power than the mountain torque at low frequencies, the relative 

importance flips for shorter time scales than about a month. For periods less than a fortnight, the 

orographic torque power spectrum is an order of magnitude (~10x) larger than friction (e.g. 

Iskenderian and Salstein, 1998). Huang and Weickmann (2008) show daily values (averaged 

over the whole Earth) that are more than 10 times as large as those shown in Figure 6.4c and 

those global averages range from large positive to large negative values. 

 The horizontal transport convergence is also shown in Figure 6.5a,b and it has generally 

larger amplitudes than the mountain torque. Peak horizontal transports are two to three times the 

largest magnitudes of the mountain torque. The horizontal convergence has peak magnitudes in 

the midlatitudes (especially during winter) and secondary peak values in the subtropics of the 

winter hemisphere. Given the mountain torque’s similarity to friction, it generally has the 

opposite sign to the horizontal transport.  

 As discussed in Appendix A, the zonal and time average northward relative momentum 

flux labelled “Ruv” in (6.13) can be partitioned to isolate various phenomena. Karoly et al. 

partition Ruv into: i) zonal and time mean meridional motions (MMC), ii) transient motions of 

any kind, and iii) time mean zonal deviations (stationary eddies) of any kind. Vertical integrals 

of these three contributions to the meridional flux of relative momentum are shown in Figure 

6.5c,d. It was shown in Chapter 4 that zonal and time varying phenomena dominate the 

midlatitude pressure pattern (e.g. Figure 4.3). Also shown previously is the winter hemisphere 

subtropics and tropics are dominated by the winter hemisphere Hadley cell (e.g. Figure 4.9). 

Accordingly, the fluxes shown in Figure 6.5c,d are consistent. The (time and zonal mean) Hadley 

cell (a MMC) contribution is poleward and largest in the winter hemisphere subtropics. The 

transients (which could include a contribution by time-varying MMCs as well as traveling frontal 

cyclones) dominate the horizontal flux in the subtropical and middle latitudes (with peak values 

near the latitude of the subtropical jets (e.g. Figure 4.13). The stationary eddies (which could 

include zonally-varying ‘local’ enhancements of the Hadley cells) are prominent only in the 

NHem (e.g. Figure 4.8). In NHem winter, the flux by stationary eddies is comparable in 

magnitude to the flux by transients, especially north of 45N. The eddies, both stationary and 

transient, can create a net meridional flux only if they have horizontally tilted troughs as will be 
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discussed more deeply in sections §6.2.1 and §6.2.2. The mean meridional cells create a net flux 

because often the meridional and zonal components both flip sign (e.g. Figure 4.9) from lower to 

upper troposphere; though additionally, the westerly flow aloft (e.g. Figure 4.13) often dictates 

the sign in the subtropics. 

 Returning to the momentum equation, because the flux has a peak near 30-45 degrees 

latitude in each hemisphere (depending on the season) the meridional derivative in (6.13) will 

flip sign near there (subject to the transcendental functions of latitude). Hence, there is generally 

divergence of momentum out of the tropics and convergence in middle latitudes poleward of the 

peak flux and thereby poleward of the subtropical jet. One might think that the convergence 

would be greatest at the jet, but no. This latitude offset is better understood later when looking at 

the kinetic energy equation.  

 To gain a sense of the horizontal variations in the axial AAM and two torques, Figure 6.6 

is shown. The annual mean planetary part of axial AAM is large and symmetric about the 

equator it varies notably as cos2 φ.  The annual mean AAM (zonal) wind component depicted in 

Figure 6.6a has elements one can anticipate from figures in Chapter 4, especially larger positive 

values associated with the jet streams. Specifically, if one mentally combines the seasonal plots 

of Figure 4.13, the jet stream maxima lying at the east coast of NHem continents are thus 

extrema in Figure 6.6a. The relative maximum AAM north of New Zealand is primarily a winter 

(JJA) subtropical jet. The strong westerlies in the SHem midlatitudes are also as expected.  The 

AAM maxima south of Africa is built more during summer (DJF) than winter. The tropical 

AAM having a negative zonal average is consistent with expectations from the seasonal plots of 

Figure 4.13. The stronger negative values of AAM over the tropical western Pacific seem more 

consistent with the stronger easterlies anticipated from the DJF stream function of Figure 4.17. 

 The horizontal variations of the friction torque (Figure 6.6b) can largely be anticipated 

from the four seasonal means of 950 hPa winds depicted in Figure 4.8. The circulation around 

the subtropical highs over the oceans has easterly “trade winds” on the equatorial side and 

westerlies on the poleward side; these flows are reflected in stronger friction torques in all five 

ocean basin subtropical highs. The oceanic westerlies of the SHem midlatitudes are both 

persistent and strong and lead to large negative annual mean friction torque. Where winds tend to 

have a clear onshore component the friction torque magnitude is stronger than elsewhere over 

land. For example, northeastern South America’s large positive values are from easterlies visible 
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in Figure 4.8 that occur year-round. However, the negative values over India’s west coast are 

mainly created during the Asian summer monsoon flow (JJA). Other areas of positive extremes 

occur where westerlies encounter north-south oriented mountain ranges (the Rockies and the 

southern Andes) and similarly for easterlies (southeast Africa).  

 The mountain torques (Figure 6.6c) show that zonal and time averages of the term are 

small differences between very large values to either side of the mountain range crest. These 

parallel bands arise from the local topographic slope. The ∂p/∂λ part of the mountain torque term 

flips sign from the west to east sides of north-south mountain ranges.  As mentioned above, the 

mountain torque similarity (or not) to the friction torque changes when one considers different 

time scales. So, the depiction in Figure 6.4 hides a lot of complexity. 

 

6.1.4 Additional Considerations  

 Atmospheric angular momentum interacts with the other major Earth systems, 

specifically the oceans and solid Earth. Oceanic angular momentum may be estimated from 

ocean currents (Peixoto and Oort, 1992). Winds apply stress to the ocean surface that generate 

currents of the wind-driven circulation (introduced in Chapter 1) and more generally change the 

elevation of the sea surface. Variations in the sea surface cause corresponding variations in the 

pressure applied to the solid Earth; analogous to the atmospheric mountain torque, change of sea 

surface elevation across an ocean basin creates a “continental torque”.  Currents at the ocean 

bottom apply a frictional stress to the seabed, thereby applying a frictional torque upon the solid 

Earth. This bottom friction torque appears to be much smaller than the continental torque.  

 The ocean surface responds such that sea level is in balance with the currents and the 

surface wind stress. The subtropical ocean gyres have peak elevations at latitudes that lie 

between the stronger atmospheric surface stresses of Figure 6.6b. These major subtropical ocean 

basin gyres tend to have highest sea level elevation towards the western side of the basin. 

However, the poleward flow is concentrated into a WBC so the sea surface changes rapidly with 

longitude such that the elevation difference between the eastern and western coastlines is 

considerably less than between the coast and the peak interior ocean elevation. Winds blowing 

onshore will drive up the coastal sea level as winds offshore drive down the coastal sea level. 

The ocean surface wind field may be visualized from Figure 4.8. Generally, the tropics have 

easterly motion which will raise the sea level on the western side compared to the eastern side of 
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each basin. In middle latitudes the zonal gradient of sea elevation is the opposite, with higher 

elevations on the east side. However, continental torques (estimated from general circulation 

modeling) are more often negative, implying dominance by the tropical slopes. Yoshioka et al. 

(2002) separate the gyre-producing winds from winds normal-to-shore to obtain rotational and 

non-rotational wind stress, respectively. They then use time-varying realistic surface winds, so 

separated, to drive a shallow-water system of equations and find that the non-rotational winds 

create most of the continental torque. Some results from this model are shown in Figure 6.7. The 

rotational-wind driven gyres dominate the sea level displacement (recall Figure 1.6). While the 

non-rotational wind displacements are much smaller in magnitude they do account for most of 

the difference between the eastern and western sides of the ocean. As anticipated, Figure 6.7b 

reveals the generally westerly flow of middle latitudes causes sea level displacement to be higher 

on the eastern side and lower on the western side of a middle latitude line. Similarly, the tropical 

easterlies create higher displacements on the western than on the eastern shores of the ocean 

basins. These properties are more easily seen in the Pacific and Atlantic oceans than in the Indian 

Ocean.  

Angular momentum of the Earth (solid, gas, and liquid components) being conserved, 

means that changes in the amount of AAM can conceivably alter the rotation rate of the Earth 

and therefore change the length of the day (LOD). In thinking about the seasonal change of the 

zonal wind (Figure 4.13), it is clear that AAM should be less during boreal summer. Figure 4.13 

shows the NHem having much greater seasonal change than the SHem so the NHem seasonal 

change is driving much of the seasonal AAM change. Sub-seasonal changes in LOD can be large 

and their timing more complex. The mass of the solid and liquid Earth is far, far greater than the 

atmospheric mass, so the seasonal LOD change is very small – a few milliseconds. Such small 

changes in LOD are measureable using very long baseline interferometry (correlating signals at 

widely separated radio telescopes of waves emitted from extremely distant quasars (Carter and 

Robertson, 1986). Various processes can change the LOD (e.g. Volland, 1996) however 

atmospheric processes generally dominate. Sharp readers might wonder about the transfer of 

AAM to the solid Earth by friction when most of the Earth’s surface is covered by oceans. The 

transfer of momentum from ocean to solid Earth is rapid, within a few days (Ponte and Rosen, 

2001). Consequently, daily values of the LOD and AAM are highly correlated (e.g. Carter and 

Robertson, 1986). 
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Juckes et al. (1994) compare and contrast the “transformed Eulerian mean” (TEM) and 

isentropic views of the zonal mean meridional circulations, including how the pressure gradient 

and geostrophic Coriolis terms can be canceled leaving an “ageostrophic” Coriolis term: f va in 

the net. The TEM context has a version of the zonal momentum tendency equation with the 

momentum tendency related to divergence of the Eliassen-Palm flux. That EP flux links heat and 

momentum fluxes by introducing a “residual circulation”. One might anticipate this linkage 

would be useful for understanding AAM tendency. However, in the context of the AAM 

tendency, Egger and Hoinka (2008) find the TEM formulation introduces much complexity 

without adding any new insight into angular momentum balance. In theta coordinates the 

Montgomery potential gradient in the momentum equation provides some forcing as a ‘form 

drag’. However, Egger and Hoinka (2014) apply TEM to diagnose wave forcing of zonal mean 

AAM in θ (and other) coordinates. 

Those readers interested in more depth on angular momentum are directed to reviews 

such as Egger et al. (2007). Here, more is presented about the momentum flux after consideration 

of how the westerlies are maintained against friction. That topic sets up discussion of jet streams 

and momentum tendency in the context of kinetic energy tendency.  

 

6.2 Momentum Fluxes 

 Above, eddy momentum fluxes are shown to be a major factor in maintaining AAM. In 

this section, these fluxes are examined specifically, including: how they are created, where they 

are larger, and how they are linked to the MMC. 

 

6.2.1  Eddy structure to maintain zonal momentum against friction 

 This subsection examines the question: how is zonal momentum maintained when 

opposed by friction? One might answer the question by a thermodynamic argument. Namely, the 

distribution of net radiation creates a pole to equator temperature gradient that in turn (from the 

hypsometric equation) creates a pole to equator geopotential gradient and (from geostrophic 

balance) creates westerlies. In short, the uneven distribution of radiation maintains the 

momentum. The traditional description of this process using energetics is via a conversion from 

(available) potential energy set up by the uneven radiation into kinetic energy. That process is 
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detailed in the next chapter. Here the focus is to gain a deeper appreciation of the transport term 

“Ruv” in the zonal momentum tendency equation (6.13).  

 As shown in Figure 6.5, the momentum transport peaks in midlatitudes and it is 

dominated by transients and stationary eddy momentum fluxes. The primary contributor to the 

momentum fluxes by transients are transient eddies, both frontal cyclones and time-varying 

longer waves. In a remarkable bit of intuition, Jeffreys (1926) found not just an explanation for 

the transport, but also uncovered a key property large atmospheric eddies must have in order to 

accomplish the transport. He first focused on the planetary boundary layer but ended up 

predicting structures in the upper air flow -- without the benefit of upper air observations! His 

predictions were not verified with certainty until two decades later. 

 Jeffreys began by showing that the zonal average flow cannot accomplish the transport. 

Consider how the zonal mean of geostrophic meridional wind is zero. He next showed that 

transport of momentum in a frictional boundary layer would not transport enough momentum. 

Finally, it followed that an eddy horizontal momentum flux was the major mechanism for 

maintaining the angular momentum balance. He needed a way to have a net zonal average 

covariance of [uv]>0 such as with northeasterlies mixed with southwesterlies. Eddies could 

transport the momentum poleward even if the winds are geostrophic, as long as those eddies 

have a particular shape. In short, he demonstrated that eddies are fundamental to the general 

circulation and he predicted their shape. His arguments are sketched below using observed 

magnitudes of observations. 

 A starting point is to estimate the frictional loss of momentum. The earth is nearly 

spherical and, to be strictly correct, curvature terms should be included. However, a Cartesian 

coordinate system is acceptable for illustrative purposes as the loss will be calculated for a 

column of unit horizontal area. Numbers similar to Jeffreys’ are used first and some better 

estimates tested later. From the linear momentum equation, Jeffreys proceeded to determine what 

the rate of dissipation would be. He chose u0 = 4 ms-1 for the horizontal average value of surface 

zonal velocity. Using Cartesian geometry, the frictional loss by an air column interacting with 

the surface of the earth may be approximated by 
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Approximate values may be substituted into (6.14) to estimate the rate of extraction from a 

column of unit horizontal area. Assumed are: the meridional velocity of 1 m/s and μ = 4x10-3. 

These choices obtain: 

 3 3 1 1 2 2

vol
vol ~ (4 10 )(1 )(4 )(4.123 )(1 ) 6.6 10xr xF F d kg m ms ms m N− − − − −= × ×∫   (6.15) 

as the rate of loss.  

 How large is this loss of momentum? One answer is to compare this rate to the amount of 

momentum in the atmosphere and from that information estimate how fast the atmosphere loses 

its momentum. The total amount of momentum in the column as estimated by Jeffreys is 
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A very rough first estimate of the time (txc) to lose all the zonal momentum is found by assuming 

the rate of loss is constant and independent of wind speed, i.e. txc = ML / Fxr ≈ 6x105s ≈ 7 days. 

This simple calculation indicates a fast rate since all momentum would be lost in about a week. 

This estimate has several rather obvious flaws. Would correcting some major flaws make enough 

difference to change our perspective? Consider these two changes. 

 First, the linear momentum ML is too small. The vertical average zonal winds in Figure 

4.13 are much stronger than 4 ms-1. The vertical mean of [u] is ≥10 ms-1 in middle latitudes and 

~20 ms-1 at the subtropical jet latitude during winter. These raise the estimate of ML by factors of 

2.5 to 5 and thus txc might be 2.5 to 5 weeks for a constant frictional loss within the PBL.  

 Second, friction is proportional to the wind speed as (6.14) shows. Hence, as the 

atmosphere slows down, the rate of frictional loss, FL must decline. A crude, speed-dependent 

friction can be added by noting that the frictional loss in (6.15) is proportional to wind speed 

squared. Therefore, assuming spin down of the flow is governed by  

 2
tu au= −  (6.17) 

then a is a positive constant controlling the rate of damping. The solution of (6.17) is  

 ( ) 1* ( )u u t b at −= = +  (6.18) 
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where b is a constant of integration such that 1/b defines the initial amplitude u(0). The velocity 

u* asymptotically approaches zero, so one must discuss the loss of momentum in terms of a 

fractional change in the velocity. For comparison purposes, the time over which 80% of the 

original momentum is lost is used. From (6.18), the time is (0.8 b)/(0.2 a). Using values for b and 

a that correspond to the velocity in (6.16) and rate of decay in (6.15) at the initial time, then 

 1 1(0) 0.25s mb u − −= =  (6.19) 

and 
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 (6.20) 

The measure of the density-weighted depth of the atmospheric column used is the scale height. 

From (6.19) and (6.20), the time to lose 80% of the momentum is about 2×106 seconds or 23 

days when the friction varies as au2. In contrast, the constant rate given by (6.15) loses 80% of 

the initial momentum (6.28) in about 5.5 days. The precise time is not so important as to note 

that friction removes linear momentum at a pretty fast rate. Hence, friction cannot be neglected 

during a season or even over a single month. 

 How is the circulation maintained against this loss? To balance the frictional loss, (6.4) 

has mountain torques and meridional fluxes of zonal momentum through latitude boundaries. 

Mountain torques can be ruled out, because they generally have a sign reinforcing the loss of 

momentum by friction on a long time average. Also, seasonal mountain torques are smaller than 

friction as shown in §6.1.3. To answer this question consider Jeffreys’ model again.  

 Geostrophic winds are assumed above a planetary boundary layer (PBL) so the 

meridional transport of momentum to replenish the frictional loss is only possible by 

ageostrophic motions in the PBL.  

 For simplicity, assuming the constant rate of decay means that something must be 

replenishing the momentum at a rate of ML per week. The transport into the domain from the 

meridional wall flux term in the angular momentum tendency equation, e.g. (6.5), must balance 

this rate of loss. Mathematically, 
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The flux through the meridional wall is on the left-hand side of (6.21). The flux in (6.5) has a 

second part: f v  
  and that part of the flux through the meridional wall is assumed to be 
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negligible over time scales of a year since such a net shift of mass would violate mass 

conservation. Positive sign in (6.21) indicates northward flux across the lower latitude wall. The 

transport across the higher latitude is set to zero when located at the pole. Alternatively, a higher 

latitude wall can be incorporated into the left-hand side of (6.21) too. Following the discussion in 

§6.1.3, the long time average mountain torque usually has the same sign as the friction, so 

mountain torque can be assumed to be incorporated into (and to increase) the friction term on the 

right-hand side of (6.21). 

 Above an Ekman boundary layer, a model having geostrophic winds precludes a zonal 

average meridional motion (away from the possible zonal pressure imbalances across 

mountains). Hence the only meridional transport of zonal momentum must occur in the boundary 

layer of such a model. Therefore, the vertical integral in (6.21) is zero outside that boundary 

layer. A steady state may be assumed, which eliminates the need for the time integrals. For 

simplicity, Jeffreys let the velocities be constant within and outside of the boundary layer. 

Equation (6.21) becomes 

 ( )
1
22 2

0 0 0 0 0 0z
R u v dx dz R u u v dx dyρ ρ µ +∫ ∫ ∫∫  (6.22) 

As above, u = u0   4 ms-1 throughout the depth of the atmosphere, and v = 0 except in the 

boundary layer, where v = u/4 = 1 ms-1 is used. For an Ekman flow, the wind crosses isobars 

from higher pressure (subtropics) to lower pressure (midlatitude storm track). For a region 

extending from 30 N to the North Pole with a 1 km deep boundary layer, the numeric values are 
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The common Rρu0 is factored out, the value 0.5 is the average cosine of latitude for the domain, 

and 6.6×103 is the distance from 30° to the pole. A question mark is inserted below the equality 

since the right-hand side of (6.23) is about 50 times greater than the left-hand side. So the 

frictional dissipation exceeds the boundary layer transport by roughly a 50 to 1 ratio! Using 

speed-dependent decay would lower the right side, and boosting ML would increase both sides. 
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But such refinements in the numerical estimates do not remove the large imbalance. Clearly, 

another process is needed. 

 Figure 6.5 shows that friction is balanced in midlatitudes by the eddies, especially the 

transient eddies. How can these eddies generate enough momentum transport if their winds are 

nearly in geostrophic balance? From Appendix A, the flux across the latitude boundary wall has 

a contribution from [u′v′]. For NHem eddies to have a net northward flux, the eddies must have 

mainly southwesterly and northeasterly winds, and to have those winds their troughs and ridges 

must be horizontally tilted. SHem eddies need southward momentum transport and therefore 

mainly southeasterly and northwesterly winds. Sufficient meridional transport can be achieved if 

the eddies have horizontally tilted troughs (and ridges), as illustrated in Figure 6.8.  

 First consider troughs that are not tilted horizontally, i.e. the trough is either circular or 

the trough axis is oriented exactly north-south. In either case, there is no net northward flux as 

the contribution from [u′v′] on the west side is canceled by the contribution on the east side of the 

trough. Figure 6.8a shows the cancellation from this east-west symmetry for a NHem example. 

Circular troughs and ridges in both hemispheres have the same cancellation. 

 Second, introducing horizontal tilts makes the flow around the trough asymmetric, as 

shown in Figure 6.8b for a NHem low. A net zonal average [u′v′] occurs because the quantity is 

much larger on the east side than the west side as drawn. Also note that a southwest-northeast tilt 

results in a net northward flux while a northwest-southeast tilt results in a southward eddy 

momentum flux. Figure 6.8b illustrates a net convergence of eddy momentum at the central 

latitudes. Hence, eddies so tilted would build momentum of the zonal mean flow at the central 

latitudes. Building momentum means a gain in kinetic energy. From energy conservation, 

something must be losing energy and that is discussed in depth in the next chapter. Briefly, 

kinetic energy is being extracted from the eddy to feed the zonal average flow. This conversion 

between zonal and eddy kinetic energy is labelled ‘barotropic’ conversion, which is discussed in 

Chapter 1 and in more detail in later chapters. One can easily imagine an initially circular eddy 

(Figure 6.8a) being distorted with the flow of a jet stream at the central latitude (Figure 6.8b); 

what may be surprising is that this distorted eddy feeds kinetic energy into that jet by building 

the mean flow at the central latitudes. The converse is also true: an eddy with tilts opposing a jet 

at the central latitudes will extract momentum from that jet. This is a way to visualize barotropic 

growth of the eddy. 
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 Figures 6.8a,b are idealized schematics. Given that eddies must transport a lot of 

momentum, how do tilted eddies appear in observations? Figure 6.8c illustrates a typical 

geopotential height pattern in the middle and upper troposphere in the NHem. Southwest-

northeast oriented ridges and troughs are commonly seen in the NHem subtropics and 

midlatitudes and are visible in Figures 4.2, 4.3a, and 4.17a. Between such a pair of tilted ridge 

and tilted trough, the zonal winds are less than the zonal average while the meridional wind is 

equatorward resulting in [ ]u v′ ′ >0. Over northern Africa the subtropical jet is accelerating while 

also oriented slightly east-northeast resulting in positive meridional and zonal eddy wind 

components and [ ]u v′ ′ >0. In between that flux is zero where either component vanishes. In the 

SHem, a northwest-southeast tilt accomplishes the poleward (southward) momentum flux and is 

visible, but harder to see in those figures due to the strong zonal average flow and generally 

weak standing waves. The tilted troughs in the subtropics are more easily seen in the stream 

function (Figure 4.17) than in the height field. Near the Earth’s surface, subtropical highs (recall 

Figure 4.4) are also tilted on time averages; Figure 6.8d shows how asymmetry in a typical time 

mean NHem subtropical high also has a net poleward transport of zonal momentum. 

 Returning to the momentum maintenance scale analysis, these tilted eddies can be 

incorporated and bring (6.23) closer to balance. For a tilted trough like Figure 6.8b, one can 

reasonably let u′ = v′ = u0 on the east side of the trough and u′ = v′ = –u0 on the west side. If this 

is done just in the PBL, then the left side of (6.23) is four times as large while the right side is 

2  times as large. It is reasonable to assume that the tilted troughs extend through the depth of 

the troposphere (~ 10 km). Density decreases (approximately) exponentially with elevation but 

one can express the depth in terms of a scale height (possibly subtracting the stratospheric 

contribution) which further raises the LHS by a factor of six to seven. The LHS is further 

elevated by noting from Figure 4.13 that mid- and upper-troposphere winds on average are much 

stronger than 4m/s; reasonable values raise the LHS another factor of five. At this point the two 

sides are similar enough for this discussion. The point of this crude calculation is that Jeffreys 

deduced that the atmosphere must have deep tilted waves in the subtropics and middle latitudes 

in order to maintain the general circulation without upper air observations!   

 Jeffreys’ conclusion was finally confirmed by Starr (1948). Observations reported by 

Starr and White (1951) showed quite clearly that the angular momentum transport was primarily 

accomplished by the eddies. Theoretical models of linear instability on a sphere (e.g., Baines, 
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1976, or Fredericksen, 1978) also contain poleward momentum fluxes produced by the most 

rapidly growing solutions. The nonlinear extensions of these simplified theoretical models show 

this transport even better since the poleward transport is enhanced at high levels compared with 

linear models (e.g., Simmons and Hoskins, 1978). 

 

6.2.2 Contributors to zonal wind tendency 

 

 The analysis in the last subsection emphasizes the role of eddies in maintaining the 

westerlies against frictional losses. The association is more complex than that. To understand this 

better, consider the zonal average zonal wind equation. Working with (C.25) and (C.23) in 

isobaric coordinates, the equation may be written as: 
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Here the pressure gradient term has been cancelled by the geostrophic part of the Coriolis term 

and the mountain torque is ignored.  

 Recalling Figure 6.5, the transients (mostly transient eddies) have largest values of 

momentum flux in the middle latitudes and are stronger in winter. The standing waves produce 

comparable momentum flux as well in the NHem winter subtropics and midlatitudes. So how are 

these transient and eddy fluxes distributed with longitude? To facilitate comparison with other 

figures, fluxes by all transients and by stationary waves are plotted in Figure 6.9.  Also shown 

are the zonal averages for each field. 

 With a little additional knowledge about the frontal cyclone (eddy) life cycle, stationary 

waves, and the time mean winds, one can anticipate much of the zonal variation in this figure. 

Already shown (Figure 4.2) are the frontal cyclone storm tracks. Frontal cyclones are the primary 

contributor to the transient fields in middle latitudes. Shown in Figure 4.3, the eddy geopotential 

height magnitudes and RMS variance are largest on the downstream ends of the storm tracks. 

The stationary waves have zonal average fluxes in subtropical and middle latitudes mainly in the 

NHem during winter. The time average upper troposphere troughs in stream function (Figure 
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4.17) are prominent only in the NHem and generally near continental west coasts in the 

subtropics and the eastern continent in middle latitudes.   

 Figure 6.9 uses a representative level where the transient momentum fluxes tend to be 

largest: upper troposphere. The general patterns shown in the figure largely match those shown 

by Oort (1983; also reproduced in Grotjahn, 1993, Figure 5.16). The connection between zonal 

wind acceleration is best linked to the ageostrophic wind. This linkage is visible in the time 

average of the zonal wind tendency equation. Inserting (C20) and (C23) into (C26) yields 
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Writing (6.25) in flux form and applying the time average obtains: 
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where the Coriolis and pressure gradient terms have been combined leaving the time average of 

the meridional component of ageostrophic wind: av in the Coriolis term (“C” in (6.26). Namias 

and Clapp (1949) concluded that the acceleration term “A” is approximately balanced by that 

ageostrophic Coriolis term in reference to accelerations and decelerations of the subtropical jet 

streams. (Ageostrophic winds are shown in Grotjahn.1993; Figure 5.7.) Poleward ageostrophic 

wind is consistent with westerly acceleration while equatorward motion is consistent with 

westerly deceleration. One notes that i) slowing down easterlies implies westerly acceleration 

and ii) the balance between terms A and C breaks down near the equator where C becomes 

small. The general pattern of the meridional component of divergent wind is similar to the 

corresponding ageostrophic wind component and the agreement is sufficient for the general 

discussion here. With that assumption, the divergent winds shown earlier (Figures 4.15 and 4.17) 

can enrich the interpretation of Figure 6.9 
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 In the NHem during DJF, the larger transient fluxes (Figure 6.9b) are positive as 

anticipated from zonal mean data in Figure 6.5c. These larger values extend from the subtropical 

central oceans northeastward onto the continents in two groupings. The western grouping has 

peaks in the Pacific and in northern Mexico while the eastern grouping has an elongated peak 

over the eastern Atlantic across the northern Sahara. The two maxima in the western grouping 

and one elongated maxima near and over Africa are structures also found by Oort (1983). While 

the magnitudes in Figure 6.9 are similar to Oort’s data over the continents, here the magnitudes 

are much larger over the oceans. The patterns and magnitudes here are more similar to the same 

quantity plotted in Karoly et al. (1998) using a different time period. Weak negative transient 

fluxes occur at the downstream ends of the Pacific and Atlantic storm tracks. At the end of those 

storm tracks the stream function of transient eddies tends to have a trough tilted generally 

northwest to southeast, resulting in the southward momentum fluxes. The lack of strongly 

negative values along a latitude circle is one reason why the transients have a large contribution 

to the zonal mean shown before.  

 Positive transient fluxes are either poleward or upstream of areas where: the subtropical 

jet streams are strongly accelerating in Figure 6.9a. The divergent wind generally has a poleward 

component (Figure 4.15a) near those accelerations. Further along the jet axis, the divergent 

winds tend to be from opposing directions along the downstream axis as one might expect from a 

jet axis at the hypothetical boundary between a “local Hadley” cell and a “local Ferrel” cell 

(called here an HCFC boundary). Zonal winds are accelerating near that subtropical Pacific 

maximum (though it is a little hard to see since the eastward extension of the Asian subtropical 

jet to the north has stronger (but decelerating) winds at those longitudes (180-140W). Since the 

transient fluxes are largest poleward of the subtropical jet core (even as that jet core moves 

further north downstream) this means those transient momentum fluxes have a positive 

meridional derivative along the jet. From the zonal wind tendency equation, (6.24) such 

divergence of transient fluxes acts to decelerate the time mean zonal wind precisely where the 

subtropical jet stream is accelerating. Clearly some other term (or terms) exceeds the transient 

flux divergence to produce the acceleration of the subtropical jet seen in Figure 6.9a.  The main 

term to produce the acceleration is the ageostrophic part of the Coriolis term. Hence, the 

acceleration/deceleration of the subtropical jet can be linked to the mean meridional cells. 

Poleward of the peak transient fluxes there is momentum convergence in the meridional 
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direction which is accelerating the midlatitude westerly wind broadly as anticipated from the 

analysis by Jeffries in the previous subsection and as expected by zonal mean momentum 

contributions as shown in Figure 6.5c. The eddy convergence also helps energize eddy-driven 

jets. 

 Moving to the stationary waves fluxes in the NHem during DJF (Figure 6.9c) these may 

be anticipated from the southwest-northeast tilted troughs and ridges in Figure 4.17a as was 

discussed in the last subsection. The larger positive fluxes near the North American west coast 

and the tropical Atlantic into the western Mediterranean are both represented schematically by 

the left side of Figure 6.8c. Inspecting time mean winds like Figure 6.9a, one anticipates u’<0 

where v’<0 in both regions.  The larger fluxes over the Sahara and near Japan are both 

approximated by the right side of Figure 6.8c. Inspecting time mean fields, one anticipates large 

u’>0 due to the low latitude of the subtropical jet there and stream function contours in Figure 

4.17a signify v’>0. The stationary waves have larger peak values than the transients, also 

directed northward, but the zonal distribution is more complex than found for the transients. 

Hence their zonal means (right-side panels in Figures 6.9b,c) have similar NHem peaks. From 

roughly 60W to 60E, there are a pair of positive and negative diagonal regions between 10N and 

45N. This pair of elongated regions creates convergence of momentum over the northern Sahara 

that is well aligned with the acceleration of the subtropical jet. Similarly, the largest flux values, 

over eastern Asia are south of the subtropical jet so the meridional derivative of the stationary 

wave fluxes is also negative where the Asian subtropical jet accelerates to its peak values. This 

acceleration over Asia is reinforced by divergent winds at 200 hPa that have a poleward 

component (Figure 4.15a). Downstream, the peak fluxes generally overlie the peak subtropical 

jet winds. Over Siberia and adjacent waters are southward fluxes creating a strong flux 

convergence just north of the subtropical jet. To the south of the East Asian subtropical jet and 

west of the dateline, a negative area of momentum flux creates flux divergence thereby 

reinforcing the deceleration of the Asian subtropical jet as it leaves the Asian continent. West of 

Europe, the gradients of the transient and stationary wave fluxes are in opposition from 30N-

45N, but reinforce in the subtropics. In short, parts of the stationary wave flux distribution 

overcomes the transients in maintaining the subtropical jet.  

 An intriguing negative area, with a northwest to southeast orientation straddles the 

equator east of the dateline; on the west side of this area the meridional derivative of this flux is 
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negative and one also finds westerly winds crossing the equator exceeding 25 m/s in these data. 

Such westerlies can act as a waveguide for eddies to move between the NHem and SHem.   

 In the SHem during DJF, the subtropical jet is poleward of the peak (negative) values of 

momentum fluxes by transients across the south Atlantic and Indian Oceans. Thus the meridional 

derivative of the transient flux is also negative and consistent with zonal wind acceleration. The 

stationary waves contribution is small over most of the SHem except along a line that parallels 

the SPCZ, but on the East side of the SPCZ trough visible in Figure 4.17a. This line cuts across 

the equatorial and subtropical eastern Pacific.  

 During JJA, the transient fluxes are strong in the SHem but generally weak in the NHem 

(the exception being the peak value near Japan is comparable to DJF). The peak SHem transient 

fluxes lie to the north of the jet across the south Atlantic, a configuration with flux convergence 

where the subtropical jet is accelerating. However, in the south Atlantic the 200 hPa divergent 

winds are equatorward and thus opposing the flux convergence by the transients. The transient 

flux magnitudes peak along 30S, favoring the east side of each ocean basin. The peak values 

from the Indian Ocean across Australia into the western South Pacific are nearly co-located with 

the subtropical jet stream axis, so there is little eddy flux convergence to accelerate that jet. 

However, the 200 hPa divergent winds are poleward and thus can accelerate that jet as 

anticipated from (6.26). The transient eddy transport near the southern tips of Africa and South 

America are larger during summer in Oort (1983). In Figure 6.9 the SHem transient fluxes have 

comparable peak magnitudes in DJF and JJA but, more in line with intuition, they are clearly 

greater during JJA. Also during SHem winter, peak fluxes are consistently ~10 degrees further 

north. During JJA, the stationary wave fluxes are generally weak except for the eastern 

Mediterranean Sea and the tropical south Indian Ocean; the divergent winds in both locations are 

poleward at 200 hPa (Figure 4.15b). 

 In addition to some stationary waves fluxes, the Coriolis term in (6.24) is also generally 

working against the transient eddies. As is apparent from the similar quantity, divergent wind in 

Figure 4.15, the zonal wind acceleration is in a region with strong poleward divergent winds. 

Poleward divergent winds are consistent with a locally stronger ‘Hadley’ circulation. In the 

NHem and much of the SHem, where the meridional derivative of the transient flux is large and 

negative, implying momentum convergence and westerly acceleration, the divergent winds have 

an equatorward component that would decelerate the westerlies through the Coriolis term in 
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(6.24). This divergent flow is consistent with a locally stronger ‘Ferrel’ circulation. A SHem 

exception is between ~120E to ~140W in midlatitudes where divergent winds are poleward at 

200hPa (Figure 4.15a). This general, opposition between MMC circulation and the eddy flux 

convergences is no accident but arises from thermal wind shear balance; the connection is 

explored further in the next subsection and more fully with the Kuo-Eliassen equation.  

 Having discussed the horizontal structures of the fluxes at a representative level, the 

vertical structures in the zonal and time average zonal wind tendency equation (6.24) are now 

considered. Technically, since a time average is applied, the time tendency term should be zero. 

Even though the long term daily mean [u] may change over a season, there is little trend over the 

course of extreme seasons defined by months DJF (or perhaps JFM) and JJA (or perhaps JAS) 

So, the terms on the RHS are expected to cancel when added together. The larger contributions 

arise from the three terms labeled in (6.24) and plotted in Figure 6.10. To assist with the 

interpretation, the MMC, subtropical jet, and easterly winds are shown schematically.  

 The first term on the RHS is labelled “Eddies” and shown in Figures 6.10b,f. The term 

consists of two parts. The first part is the meridional convergence of the meridional flux of zonal 

velocity due to all transients. The second part is the meridional convergence of the meridional 

flux of zonal velocity from stationary waves. It is a reasonable approximation to ascribe the bulk 

of the flux convergence of transient winds to transient eddies and those to midlatitude traveling 

frontal cyclones. The other two labeled terms come from the meridional flux of zonal average 

absolute vorticity by the zonal average meridional wind. That meridional flux is split into the 

relative vorticity flux (Figures 6.10c,g, the “MMC” term) and the planetary part (Figures 

6.10d,h, the “Coriolis” term).   

 The “Eddies” flux convergence term during JFM, Figure 6.10b may be compared with 

information plotted in Figures 6.9b,c. The 200 hPa level in Figure 6.10b may be deduced from 

minus the meridional derivatives of the zonal averages shown in Figures 6.9b,c (ignoring 

differences in the years and months used, of course). In those prior figures the largest values of 

transients and stationary waves together are found in the NHem. On that basis one might expect 

the “Eddies” zonal mean flux divergence to be largest in the NHem. However, the transient flux 

in the SHem is not only not small during JFM, it has less variation with longitude than the 

corresponding NHem flux. From Figure 6.5c one anticipates the peak fluxes on the zonal mean 

to be negative near 40S and positive near 30N. In midlatitudes: taking minus the meridional 
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derivative to obtain a horizontal flux convergence in a zonal mean finds a positive maximum to 

the south of 40S and north of 30N along with corresponding a negative values north of 40S and 

south of 30N. Figure 6.10b shows this pattern with peak values near the 200 hPa level shown in 

the prior figure. In higher latitudes of the prior figures, one anticipates negative values from the 

stationary waves north of 60N and south of ~65S. Hence, these “Eddies” fluxes are building 

zonal mean westerlies in middle latitudes and extracting it in the subtropics and high latitudes. 

The larger divergences occur primarily in the middle to upper troposphere. The level of relative 

peak magnitudes declines towards the pole somewhat mirroring the declining level of the 

tropopause with increasing latitude (as deduced from Figures 3.20 and 4.9) Within a hemisphere, 

larger values are found during winter. During JAS the NHem contributions by both transients 

and stationary waves are greatly reduced; some positive values remain but the pattern is shifted 

northward and the peak values are 10-15 degrees poleward. A similar seasonal shift of the 

positive peak divergence occurs for the SHem. Compared with JFM, during JAS the SHem 

transients in Figures 6.9e,f zonal averages are: larger, but the midlatitude peak value shifted from 

40S to 30S while the higher latitude extremum shifted little. Hence the gradient between those 

extremes has decreased for JAS. In turn, positive values in Figure 6.10f occur from 30S to ~65S 

with peak values slightly less than during JFM. The shift of the peak flux from 40S to 30S 

elevates the negative values of the flux convergence in the subtropics (15S to 25S). In short, the 

Eddies term has a “tri-pole” pattern in each hemisphere: a midlatitude positive region of 

momentum convergence that is broader during local winter and bracketed by two negative 

regions (momentum divergence). As for other variables, the seasonal change is less in the SHem.  

 The MMC term in (6.24) is plotted in panels c and g of Figure 6.10. Corresponding 

panels a and e help with the interpretation. The meridional shear part of the term will be larger in 

the upper troposphere and lower stratosphere because [u] is larger there (e.g. Figure 4.13). The 

meridional wind can be anticipated from flow in the meridional plane around the MMCs. As 

mentioned before (e.g. Figure 4.9 as well as in the top two panels, the winter hemisphere 

“Hadley” cell is much stronger than the corresponding summer cell. Hence the term is large (and 

negative) in the winter hemisphere tropics where meridional circulation is poleward. It is clear 

that on these zonal averages, the MMC term is reinforcing the “Eddies” term in the tropical 

winter hemisphere upper troposphere. 
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 The remaining panels (Figures 6.10d,h) show the contribution from the Coriolis term 

defined using the ageostrophic meridional wind that in turn can be approximated from the MMC 

circulations on the top panels as well as plots of the MMCs shown before. The pattern follows 

the meridional wind portion of the MMCs. The meridional wind flows opposite directions in 

lower and upper troposphere and is stronger where associated with the Hadley cells. Multiply 

that flow by the Coriolis parameter. Since the Coriolis parameter a) flips sign between 

hemispheres with a hard zero at the equator and b) increases in magnitude towards the poles this 

term also flips sign vertically in the tropics. Evidence for “Ferrel cells” and even hints of “Polar 

cells” are also visible in this term. The plotted terms in Figure 6.10 are expected to largely cancel 

when added together if zonal wind change is very small. Therefore, the Coriolis term also has a 

“tri-pole” pattern in each hemisphere. Similar to the other terms, the upper maxima have highest 

elevation in the tropics and dip to lower elevations in polar regions. The Coriolis term adds 

westerly acceleration at upper levels in the tropics, where the Eddies term extracts westerly 

motion. The Coriolis term is larger and positive in the winter hemisphere where the MMC term 

substantially extracts westerly motion. At low levels, where the “Hadley” cells have generally 

equatorward flow, this term introduces easterly acceleration. (The easterly acceleration is not 

balanced by other terms shown in Figure 6.10 but one imagines the friction term, slowing down 

easterly winds in the PBL, largely provides the needed balance.) Given the Coriolis term’s 

dependence upon av   , these accelerations of u   in the tropics at lower and upper levels are 

consistent in sign with angular momentum conservation of air moving meridionally, as in the 

simple calculations shown in Figure 4.18. The Asian summer monsoon can be envisioned as part 

of an expansion of an Indian Ocean “local” Hadley cell leading to the northward flow north of 

the equator and contributing much to the near surface positive values in there during JAS (Figure 

6.10h). Considering the middle latitudes, one sees again the opposition between the “Ferrel” cell 

motion wanting to decelerate the westerlies opposing the acceleration by the convergence of 

eddy momentum. This linkage between MMCs and eddy fluxes can be turned around to form an 

expression that deduces an MMC from convergence of eddy momentum flux in the next 

subsection. 

 

6.2.3 Eddy momentum fluxes linked to meridional cells 
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 As determined above, the transient eddy momentum fluxes in middle latitudes are 

opposed by the angular momentum changes produced by meridional motions within MMCs. 

This connection can be rearranged mathematically as eddy fluxes creating MMC motion.  

 Beginning with (6.2) and expanding the advection terms using the continuity equation  
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Writing the meridional and vertical advection terms in (6.27) in flux form yields: 
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Substituting (6.28) into (6.27) and invoking the continuity equation (C.30) removes the 

divergence operator multiplying M. Taking a time average removes the local change term in 

(6.27) while taking a zonal average removes the longitudinal advection term. For simplicity, the 

mountain torque, arising from the zonal mean pressure gradient term, is dropped. The result is: 
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Expanding the quadratic terms into zonal mean and eddy parts, e.g. [ ] [ ][ ] [ ]Mv M v M v′ ′= +  and 

applying the Chain Rule obtains: 
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Using the continuity equation again and moving the eddy flux terms to the RHS obtains: 
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Equation (6.31) can be interpreted as an equation for the MMC circulation [v] and [ω] has the 

while the RHS has the eddy forcing terms. Defining the MMC strictly as zonal average flow in 

the meridional plane, one could expressing [v] and [ω] in terms of a stream function, Ψ . One 

would specify M and the eddy fluxes from observations and solve (6.31) as a linear, second-

order p.d.e. in Ψ.   
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As an equation for a MMC circulation is (6.31) too simple? Perhaps the mountain torque 

term matters? From Figures 6.4 and 6.5, this torque is much smaller than the momentum fluxes 

and it would be zero above the Earth’s surface (locally). Something major contributes to the 

MMC that is missing from (6.31). To find it, recall that the derivation began with the zonal 

momentum equation. The Coriolis term mixes meridional and zonal winds. So, if one examines 

the corresponding meridional wind tendency equation, the pressure gradient term cannot be 

dropped, [ ]/ 0p ϕ∂ ∂ ≠ . A meridional gradient of pressure develops from meridionally-varying 

diabatic processes (e.g. absorbed solar radiation that varies with latitude) as well as energy 

conversions (discussed in the next Chapter). Therefore, a fuller picture of the creation of MMCs 

also requires consideration of a thermal equation and the Kuo-Eliassen equation (in a later 

chapter) does just that.  

 

6.3 Other Expressions of Zonal Mean Momentum  

 

6.3.1. Net eddy forcing of zonal momentum: Eliassen-Palm fluxes 

 

The prior subsection deduces MMC motion from eddy momentum fluxes but ends by 

noting that eddy heat fluxes are missing and will also play a role. While a full elaboration is left 

for Chapter 8, one can reveal a role for meridional eddy heat fluxes in a zonal mean meridional 

circulation while investigating the maintenance of zonal momentum using a popular diagnostic. 

That popular diagnostic is commonly referred to as the “E-P flux” vector, represented here by: 

F. The mathematics is developed below using a simplified form of a balanced set of equations.  

The quasi-geostrophic (QG) system is sufficient to illustrate broadly the dynamics. 

Similar dynamical analogs have been derived for less restrictive equations (e.g. Andrews and 

McIntyre, 1976, 1978a, 1978b). Appendix C includes the QG system. The QG system can be 

derived using perturbation theory, where the Rossby number (Ro) is one of several 

nondimensional parameters using a small Ro expansion (e.g. Grotjahn, 1979).  The lowest, or 

“zero” order system is in geostrophic and hydrostatic balance which, along with the ideal gas law 

may be combined to formulate a thermal wind shear relation as illustrated by (C.39). The next 

order, order “one” is QG balance where: all advecting and advected velocities are geostrophic 

winds. Vertical advection only appears in the potential temperature tendency (C.43) and 
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continuity (C.29) equations of the QG system. In the QG θ tendency equation the horizontal 

average static stability is large enough, even for small vertical motions, to cause the vertical 

advection to be potentially comparable to the largest terms in that equation. Hence the horizontal 

average θ on isobaric surfaces: θs is only a function of pressure. 

To further simplify the mathematics, Cartesian geometry (C.19) and isobaric coordinates 

(C.23) are chosen. The continuity equation in this context is invoked to write the advection terms 

in “flux” form. Finally, zonal averaging is applied and any mountain torque created is neglected. 

Zonal averaging eliminates the zonal advection and zonal pressure gradient terms as they are 

perfect differentials on a periodic domain. (Hence mountain torques are ignored.)   

The results of these simplifications for (C.41), (C.39), (C.29), and (C.43) are 

respectively: 
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Since [vg] = 0.  
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Where (6.33) defines a local temporary function of pressure, G, used here to reduce clutter in this 

derivation. 
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Where DT is the diabatic heating rate per unit mass.  

Observationally (e.g. Holton, 2004) the divergence of horizontal eddy heat flux is largely 

cancelled by adiabatic heating or cooling by vertical motions of the statically stable atmosphere. 

By removing the portion that cancels, the remaining vertical motion can be ascribed to the 

presence of diabatic heating.  Consequently, it is reasonable to combine the two terms on the 

LHS in (6.35) to define a vertical motion, [ω♯] that is often labelled part of a “residual 



6-33 
 

circulation” in the meridional plane. It is “residual” in the sense of after accounting for adiabatic 

heating or cooling. Specifically: 
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Hence, 
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The geostrophic subscript has been dropped from v’ to reduce clutter. Inserting (6.37) into (6.34) 

obtains an expression for a corresponding [v♯] that must also satisfy continuity: 
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leading to  
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if 
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Substituting this expression for [v] in (6.32) obtains: 
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Rearranging and combining terms 
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Where the divergence operator M∇ •F  is in the two-dimensional (y,p) plane. Eq. (6.42) defines the 

diagnostic, vector quantity F here labelled the “QG E-P flux”. The name arising from a related 

argument developed in a study of mountain waves by Eliassen and Palm (1961). Hence:  
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It is a subtle but important point to note that if [ω*] is viewed as a “residual” then so is [v♯]. 

Given that view, then (6.42) can be viewed as having three physical ways to alter the zonal mean 

flow. The first is due to meridional transport of planetary angular momentum (per unit mass) by 

the residual circulation. The second is by eddy forcing expressed by the M∇ •F term.  Thirdly, 

by friction (Fx) in the direction of the flow. This subtle point leads to statement such as: “

M∇ •F represents the sole internal forcing of the [zonal] mean state” by eddies (Edmon et al., 1980).  

Additional dynamical concepts follow. 

 

6.3.2 Eliassen-Palm flux dynamics 

 

 For adiabatic flows that are stationary, every term in (6.42) is zero, including M∇ •F .  

The latter result, that M∇ •F =0, is often called the “Eliassen-Palm theorem”. For this situation, the 

eddy forcing by momentum flux divergence and heat flux divergence must exactly cancel. This situation 

also implies no time tendency in (6.36) and that [ω♯] and [v♯] are also zero, an expression of the Charney 

and Drazin (1961) “non-acceleration theorem”. This non-acceleration condition can be generalized to 

hold even for finite amplitude waves, as long as the QG equations still apply.  Edmon et al., (1980) show 

this property using the QG potential vorticity equation whose meridional flux of potential vorticity 

(v’Q’QG) equals M∇ •F which equals zero.  

 The analysis so far has been for the quasi-geostrophic framework with pressure as the 

vertical coordinate. A problem with this framework is momentum transfer between the 

atmosphere and the surface is not handled correctly. To resolve that problem and to extend the 

analysis both beyond QG and to finite amplitude waves, various authors have recast the analysis 

in isentropic coordinates (e.g. Andrews, 1983; Tung, 1986; Tanaka et al., 2004). A notable 

difference in the potential temperature coordinates is a term in the vertical component of the 

Eliassen-Palm flux introduced by pressure variation zonally over potential temperature surfaces. 

In fluid dynamics, a “form drag” is introduced by a force acting normally to a surface (which 

distinguishes form drag from skin drag which is directed tangentially). Pressure is the weight of 
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the air above a point so it acts in the vertical dimension and by that reasoning this pressure 

variation term on isentropic surfaces is often called a “form drag”. This form drag term is an 

expression of the eddy heat flux found in the vertical component of F in isentropic coordinates. 

(The isentropic vertical component of F also includes diabatic and momentum flux terms on the 

slope of the θ surfaces (e.g. Tanaka et al., 2004). Analyses for “dry” potential temperature 

coordinates have been extended to “moist” isentropic coordinates (e.g. Yamada and Pauluis, 

2016).  

 

>Show obs of [EP flux] vectors with divergence contours.  Can the problem be visualized in 

theta coordinates? The meridional cells look quite different. Presumably the eddy fluxes are 

similar in both coordinates? Start with Johnson (1989, review). However the Yamada and 

Pauluis (2016) provides a nice road map for dry and moist isentropic views. Also links to EP 

flux< 

 

6.4 Summary of Zonal Average Momentum Flow 

 >describe and show the momentum flow schematic< 

 

 

 

______________________________________________________________    
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The zonal momentum equation in Cartesian coordinates with elevation as the vertical 

coordinate can be written: 

 1[ ] x
u u u u pu v w f v F
t x y z xρ

∂ ∂ ∂ ∂ ∂
+ + + − + =

∂ ∂ ∂ ∂ ∂
 (6.44) 

Using the continuity equation to obtain the flux form and the Bousinesq approximation, then 

(6.44) can be written (following Lindzen, 1970) as: 

 x
u uu uv uw Gfv F
t x y z x

∂ ∂ ∂ ∂ ∂
+ + + − + =

∂ ∂ ∂ ∂ ∂
 (6.45) 

Here, G is variable being temporarily defined as 0/G pδ ρ=  where δp is the departure 

from the hydrostatic value associated with the density ρ0. Applying a “zonal” average in x (and 

ignoring any mountain torque type term) yields: 

 [ ] [ ] [ ] [ ' '] [ ' '][ ] [ ] [ ] [ ]x
u u u u v u wv w f v F
t y z y z

∂ ∂ ∂ ∂ ∂
+ + − = − − +

∂ ∂ ∂ ∂ ∂
 (6.46) 

At least away from the equator and for the large scales discussed in this book, it is 

reasonable to expect thermal wind shear balance to hold. That balance is a combination of 

hydrostatic and geostrophic balance with the ideal gas law. One can imagine how MMC motions 

[v] and [w] might interact with eddy fluxes through thermal wind shear balance. Equation (6.46) 

indicates (as noted above) that convergence and divergence of eddy momentum fluxes would 

accelerate or decelerate, respectively, zonal mean zonal wind [u]. Where meridional motions [v] 

have opposite directions in upper versus lower troposphere, conservation of angular momentum 

during such motions would cause a change in the vertical shear of [u]. Such differential motions 

of [v] occur in the MMCs. These variables are already visible in (6.46). However, changing the 

[u] wind shear implies changing the meridional temperature gradient. Additionally, the converse 

argument holds: eddy heat fluxes that reduce a meridional temperature gradient imply, from 

thermal wind shear balance, a reduction in the vertical shear of [u].  Furthermore, MMC vertical 

motions, [w], will change the temperature structure by adiabatic warming or cooling. Since 

MMCs have net vertical motions that differ between higher and lower latitudes, the meridional 

temperature gradient is also changed by [w]. So clearly the thermal and momentum field 

variables are linked, especially where geostrophic balance is important. Therefore, it is 
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instructive to consider including the eddy heat fluxes into the tendency equation for [u]. A way 

to include those heat fluxes is by “adding zero” to (6.46); namely by adding and subtracting the 

same term. After making new combinations of terms, something remarkable happens as one of 

those combinations is zero (within certain assumptions). Also remarkable, even deeper dynamics 

are revealed by this action.  

The discussion here follows Andrews and McIntyre (1976) for large scale waves who in 

turn followed a path by Eliassen and Palm (1961) an original study in the context of mountain 

waves. The discussion above is simple physical reasoning to show an intuitive linkage between 

zonal momentum tendency and eddy heat flux, the analysis is not limited to where geostrophic 

balance holds. 

Add  

 [ ] [ ]
[ ]

[ ] [ ]
[ ]

u v u v
f

y z z y
z z

θ θ
θ θ

   
   ′ ′ ′ ′ ∂ ∂∂ ∂   − − +     ∂ ∂∂ ∂ ∂ ∂     
   ∂ ∂   

 (6.47) 

to both sides of (6.46). On the LHS combine the first half of (6.47) with the meridional advection 

and the second half to the vertical advection. The result is: 

 

[ ] [ ]
[ ]

[ ] [ ]
[ ]

* *[ ] [ ] [ ] [ ' '] [ ' '][ ] [ ] [ ]x

u v u vu u u u v u wv f w f F
t y z y z y z z y

z z

θ θ
θ θ

   
   ′ ′ ′ ′ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + − + = − − − − + +       ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
   ∂ ∂   

 (6.48) 

Here the asterisks denote a “residual circulation” defined by that incorporation of  (6.47), 

namely: 
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[ ] [ ]
[ ]

[ ] [ ]
[ ]

*

*

v
v v

z
z

and

v
w w

y
z

θ
θ

θ
θ

 
 ′ ′∂    = −    ∂∂  
 ∂ 

 
 ′ ′∂    = +    ∂∂  
 ∂ 

 (6.49) 

Following Andrews and McIntyre, we define a temporary vector G in the (y, z) plane: 

 { } [ ] [ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ], ,y z

v u v u
G G G u v u w f

z y
z z

θ θ
θ θ

 
 ′ ′ ′ ′  ∂ ∂ ′ ′ ′ ′≡ = − + −   ∂ ∂∂ ∂  
 ∂ ∂ 



 (6.50) 

 

One can rewrite (6.48) using (6.50) as: 

 * *[ ] [ ] [ ][ ] [ ] [ ]y z
x

G Gu u uv f w F
t y z y z

∂  ∂∂ ∂ ∂
+ − + = − − + ∂ ∂ ∂ ∂ ∂ 

 (6.51) 

 

For steady, conservative, linear waves, Andrews and McIntyre obtain the result from Eliassen 
and Palm (1961) that the divergence of G on the RHS of (6.51) is zero; it is sometimes called a 
“generalized Eliassen-Palm relation”.  

It is useful to examine how the zonal momentum equation looks when the quasi-
geostrophic approximation is applied.  

   [ ] [ ] [ ' '][ ] [ ] [ ]x
u u u vv f v F
t y y

∂ ∂ ∂
+ − = − +

∂ ∂ ∂
 (6.52) 

Adding 

 

To both sides of (6.52) obtains: 
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Include something about correlation with [u] tendency mentioned by Pfeffer for . 

**Got to HERE*** 

The zonal momentum equation in Cartesian coordinates with pressure as the vertical 

coordinate can be formed by substituting (C.19) and (C.23) into (C.26). The result is similar to 

(6.25). After applying a zonal average and dropping the mountain torque term, one obtains: 

 [ ] [ ] [ ] [ ] xu uv uw f v F
t y p
∂ ∂ ∂

+ + − =
∂ ∂ ∂

 (6.53) 

where Fx represents friction in the zonal direction. The nonlinear terms are partitioned into zonal 

mean and eddy contributions. 

 [ ] ([ ][ ]) ([ ][ ]) [ ] [ ] [ ] xu u v u f v u v u F
t y p y p

ω ω∂ ∂ ∂ ∂ ∂′ ′ ′ ′+ + = − − +
∂ ∂ ∂ ∂ ∂

 (6.54) 

A stream function is introduced for the two-dimensional flow in the meridional plane: 

 [ ] and [ ]v
p y
ψ ψω∂ ∂

= = −
∂ ∂

 (6.55) 

Substituting (6.55) into (6.54) and neglecting all terms involving ω obtains: 

 [ ] ([ ] ) [ ] xu u f u v F
t y p p y

ψ ψ∂ ∂ ∂ ∂ ∂ ′ ′+ = − +
∂ ∂ ∂ ∂ ∂

 (6.56) 

Expanding the total derivative in the thermodynamic equation (C.3), writing the wind and 

potential temperature as zonal mean and eddy parts, and applying a zonal average obtains 

 [ ] ([ ][ ]) ([ ][ ]) [ ] [ ]v v
t y p y p
θ θ ω θ θ ω θ θ∂ ∂ ∂ ∂ ∂′ ′ ′ ′+ + = − − +

∂ ∂ ∂ ∂ ∂
  (6.57) 

where θ  is a diabatic heating rate.  

Several simplifying assumptions are applied to the θ equation (6.57). In the quasi-

geostrophic system the term involving ω′ is neglected in favor of the term involving [ω] since 

the zonal average static stability is large enough to make that term comparable to horizontal 

advection. Other assumptions are: steady motions (∂/∂t = 0), adiabatic conditions ( 0θ = ), and 

that the zonal mean basic state velocity is [u] only.  

 

********* got to here ****** 

FF After showing link to du/dt, show link (in midlats) of del dot F to resid 

circulation to make that connection. To do that you need to neglect friction and the time 



6-40 
 

tendency of u in the zonal eqn and then get an approximation that v* relates to minus del 

dot F. That gets you poleward residual circulation at high levels (400 to 300 mb especially) 

of the midlats and equatorward motion at very low troposphere (900 mb and below) levels 

during winter. During NH summer, the del dot F is too weak in the “free troposphere”. So, 

this approximation is a cute aside along the way but not the full residual circulation in 

practice, which looks more like the isentropic MMC. See “general circulation” section in 

Edmon et al. (1980). 

  

The last assumption means that since the mean flow has no [v] and [ω], these motions are 

only due to the Stokes drift. A subscript s designates the Stokes velocities. Of course, this last 

assumption also provides a built-in connection between the Stokes drift and the mean meridional 

circulations derived in §6.3 in addition to the circulation discussed in §6.2.4. Combining the 

continuity equation for the Stokes motion with the assumptions stated above yields 

 

[ ] [ ][ ] [ ] [ ]s sv v
y p y
θ θω θ∂ ∂ ∂ ′ ′+ = −
∂ ∂ ∂  (7.75a) 

 

1
[ ][ ] [ ]s v
p y
θω θ

−
 ∂ ∂ ′ ′= − + ∂ ∂   (7.75b) 

A stream function ψs may be defined for the Stokes motion, similar to (7.68). Assuming that the 

meridional and pressure derivatives of ψs are comparable (e.g., as in Figure 6.12a), then the [v]s 

term in (7.75a) can be neglected if the surfaces of [θ] are assumed to be nearly horizontal. The 

same assumption equates the right-hand side of (7.75b) with a term in (7.74). In order to satisfy a 

continuity equation for Stokes flow, the heat flux term in (7.73) corresponds to [v]s. 

In deriving (7.75), a key assumption is that there be no change in the [θ] field. This means that 

any eddy heat flux convergences that attempt to change [θ] must be cancelled by the mean 

meridional circulation, ([v], [ω]). By (7.73) and (7.74) the changes to [θ] caused by the eddy heat 

fluxes can be thought of as “advection” by the Stokes flow. One could visualize the Stokes flow 

as attempting to flatten the [θ] isentropes in the same way that eddy heat fluxes would. To 

counteract this change, the mean meridional circulation ([v], [ω]) must deform the isentropes in 

the opposite direction. Two examples illustrate the point. 

At this stage a transformed velocity field is introduced 
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 v♮ 
[ ]

[ ][ ]
p

vv
p θ

θ
∂
∂

 ′ ′∂
= −   ∂    (7.73) 

 ω♮ 
[ ]

[ ][ ]
p

v
y θ

θω ∂
∂

 ′ ′∂
= −   ∂    (7.74) 

These transformed velocities may seem peculiar at first glance. In actuality, they are the 

Lagrangian motion of parcels in the meridional plane. The velocities expressed as heat flux terms 

approximate the “Stokes drift” associated with motions around latitudinally and vertically 

varying waves. The particular form here is based on Lagrangian motion in the [θ] equation for 

small amplitude perturbations. 

The quasi-geostrophic definition of the EP flux is that ϒ = (ϒy, ϒp) where the 

components are defined as 

 
[ ]

[ ]( , ) [ ],y p

p

f vF F u v θ

θ
∂
∂

 ′ ′
′ ′= −  

   (7.66) 

On a “β-plane” (where f is a linear function of latitude), ϒy is proportional to the momentum flux 

and ϒp is proportional to the heat flux divided by a measure of static stability. Andrews and 

McIntyre (1976) and Boyd (1976) extend ϒ to spherical geometry. Eliassen and Palm (1961) 

express ϒ for an “ageostrophic” case, as do Andrews and McIntyre (1978). The so-called “EP 

Theorem” states that the divergence of ϒ is zero for steady conservative wavelike disturbances 

upon a zonal wind, or that ∇ · ϒ = 0. The nondivergence can be shown to apply for certain 

special conditions. 

Profiles of ϒ can relate interaction between eddies and a zonal mean state. Edmon et al. (1980) 

sketch a couple of illustrations of this interaction. 

 Writing (7.69) as 

 

[ ] [ ]u u fv R
t y p

ψ ∂ ∂ ∂
+ = +∇⋅ + ∂ ∂ ∂ 

F

 (7.76) 

 [ ] [ ] x
u u fv F
t y p

ψ ∂ ∂ ∂
+ = +∇ ⋅ ϒ + ∂ ∂ ∂ 

  (6.58) 

the quasi-geostrophic form of (7.76), where advecting velocities are geostrophic, leading to [v] = 

0 once again. Then 
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[ ] [ ]s
u f v R
t

∂
= +∇⋅ +

∂
F

 
where (7.73) has been used. It is clear from this equation that part of the EP flux divergence will 

be cancelled by the Stokes drift. The cancellation should be obvious immediately since heat 

fluxes do not appear in the zonal momentum equation! 

the EP flux relates to the concept of potential vorticity. For adiabatic motion the Ertel 

potential vorticity is a conserved quantity. That is, 

 
0

P

d f
dt θ

ζ
∂
∂

 +
= 

   
where the Ertel potential vorticity is the quantity inside the parentheses, and ζ is the relative 

vorticity normal to a θ surface. (Definitions in other coordinates may be found in Pedlosky, 

1987, pp. 38–42.) For quasi-geostrophic motion a similar quantity can be defined from the 

vertical component vorticity equation (to first order in the Rossby number). 

 
( )d f f

dt p
ωζ ∂

+ =
∂  (7.83) 

A nondimensional form of the vorticity equation is used here. The adiabatic equation is 

 
1 d

S dt
θω −

=
 (7.84) 

where S = [∂θ/∂p] is the average pressure derivative of potential temperature. Consistent with the 

quasi-geostrophic approximation, one assumes that S is a constant. Thus (7.84) is analogous to 

(7.8), used earlier. If one differentiates (7.84) with respect to pressure and substitutes the result 

into (7.83), then to first order, 

 
1 0dq d f

dt dt p S
θζ

  ∂  ≡ + + =   ∂      (7.85) 

This form of the potential vorticity equation is analogous to (7.1), and quasigeostrophic potential 

vorticity q is again conserved. 

One can separate q into zonal mean and eddy parts 

 [ ]q q q′= +  
The zonal mean part includes the planetary vorticity, leaving 

 

v uq f
x y p S

θ′ ′ ′∂ ∂ ∂  ′ = − +  ∂ ∂ ∂    (7.86) 
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From this equation it is straightforward to show that the divergence of F equals the northward 

flux of q′. 

Multiplying (7.86) by v′ and using the chain rule, 

 

( )21 ( ) ( )
2

( )

vv q v u v u
x y y

f vv
S p p

θ θ

′∂ ∂ ∂′ ′ ′ ′ ′ ′= − +
∂ ∂ ∂

′ ∂ ∂′ ′ ′+ − ∂ ∂   (7.87) 

The perturbation velocities are geostrophic and thus are nondivergent; they also satisfy the 

nondimensional thermal wind relation. 

 
0u v

x y
′ ′∂ ∂
+ =

∂ ∂  and  
0v

p x
θ′ ′∂ ∂

+ =
∂ ∂  (7.88) 

Therefore (7.87) becomes 

 

( ) ( )

( )

2 2

2

1 1( ) ( ) ( )
2 2

1( ) ( )
2

v q v u v u
x y x

f v
S p x

θ θ

∂ ∂ ∂′ ′ ′ ′ ′ ′= − −
∂ ∂ ∂

 ∂ ∂′ ′ ′+ − ∂ ∂   
Taking a zonal average around a latitude circle causes the x derivative terms to vanish leaving 

 
[ ] [ ] [ ]fv q u v v

y S p
θ∂ ∂′ ′ ′ ′ ′ ′= − + ≡ ∇ ⋅

∂ ∂
F

 (7.89) 

 

Dickinson (1969) shows that the zonal mean flow can be related to the eddies by the 

following argument. One writes (7.85) in flux form and applies the zonal average. The x 

derivatives vanish because the integration is around a closed latitude circle. Since (7.85) is for 

the quasi-geostrophic system, the advecting velocities are geostrophic, hence [v] = 0. 

 

[ ] [ ] 0q v q
t y

∂ ∂ ′ ′+ =
∂ ∂  

Differentiating with respect to y yields 

 

2 2

2

[ ] [ ]q v q
t y y

∂ ∂ ′ ′− =
∂ ∂ ∂  (7.90) 

From (7.86) and (7.85) one may write 
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[ ] [ ]q u
y

∂
− =
∂

L★

 (7.91) 

where L★ = 
2 2 2 2/ /C p y∂ ∂ + ∂ ∂  and C is a constant. Therefore (7.90), (7.91) and (7.89) are 

related as follows 

 

2 2 2

2 2

[ ] [ ] [ ] ( )u q v q
t t y y y

∂ −∂ ∂ ∂′ ′= = = ∇ ⋅
∂ ∂ ∂ ∂ ∂

L F
★

 (7.92) 

One might be tempted to assume that the pressure derivatives in L★ can be neglected, in which 

case the divergence of the EP flux will increase [u] up to integrative constants. However, that 

assumption is misleading (Pfeffer, 1987). One can get a sense for the problems by examining the 

quasi-geostrophic form of (7.76), where advecting velocities are geostrophic, leading to [v] = 0 

once again. Then 

 
[ ] [ ]s
u f v R
t

∂
= +∇⋅ +

∂
F

 
where (7.73) has been used. It is clear from this equation that part of the EP flux divergence will 

be cancelled by the Stokes drift. The cancellation should be obvious immediately since heat 

fluxes do not appear in the zonal momentum equation! Pfeffer (1987) shows that the first two 

terms on the right-hand side are large, but nearly cancel. In order to eliminate the explicit 

dependence on [v]s, one obtains the more complicated operator in (7.92). The sensitivity of the 

operator L★ is discussed in Pfeffer (1987). For the general case (spherical geometry and variable 

S) L★ has variable coefficients. Pfeffer shows that the local derivative of [u] depends strongly on 

the vertical pattern of the right-hand side of (7.92) and not on the local value of ∇⋅F , especially 

in the higher latitudes of the troposphere. The sensitivity arises from C, which is inversely 

dependent on static stability S. S is small in the troposphere. That sensitivity probably explains 

why ∇⋅F  and [ ]/u t∂ ∂  are not highly correlated in the troposphere. Baldwin et al. (1985) find the 

average correlations to be 0.34 in the upper troposphere of the Northern Hemisphere middle 

latitudes during a winter period. In Hartmann et al. (1984), the best correlations are in the middle 

stratosphere and near the tropopause; only a few grid points exceed 0.6. In the stratosphere, S is 

much larger, and one is further away from the surface boundary, so the EP flux divergence 

method works better; more details are given in §7.4.6. In the troposphere, Pfeffer shows that the 

traditional reliance upon eddy momentum convergence is a better way to diagnose eddy changes 
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to the zonal mean flow. What one can conclude about (7.92) is that it is necessary for the eddies 

to transport potential vorticity in order for them to alter the zonal mean zonal flow. 

 

>>Discuss (above?) why and where EP flux is useful. What not to be misled<< 

 

 

 

<GOT TO HERE> 

 

 

Kuroda 2016, 2017 papers:  the subtropical jet, at least in winter (when the H cell is strongest) 

can be driven by the H cell (the original thinking). While this newer thinking suggests eddies, 

namely the stationary waves drive the zonal mean jet, and maybe transient eddies as well, the 

separation is not full. The eddies themselves help drive the MMCs by their eddy covariances 

(heat and momentum fluxes) so MMCs are still in the picture, we just need to think of them as 

being driven by more than the diabatic heating. So... maybe this discussion of jet streams 

needs to come *after* the K-E equation. Placed in chapter 8. Maybe start by saying that a 

prominent feature of the zonal momentum is the subtropical jet; that one might think of this jet as 

flowing from the MMCs since (at least in winter, when the H cell is strongest) the SJ is located at 

the polar end of the H cell. One can find reduced-complexity models (see list in Kuroda) that 

examine this link. However, we have seen eddy momentum fluxes being prominent in middle 

latitudes and it is natural to wonder how they impact the subtropical jet. Do transient eddies only 

extract energy? With the zonal variations of the SJ being part of the stationary eddy pattern? Or 

do eddies help maintain it. Certainly our Gill equation sees an indirect role for eddies as they 

eddy momentum fluxes force the MMC which in turn forces an SJ by angular momentum 

conservation (if nothing else). But there is “other else”. The next chapter considers potential 

energy and thus heat and temperature so heat and temperature fluxes also play a role in the 

MMCs and in the SJ. To explore that we need to re-examine those eddy heat fluxes. So, as a 

bridge to the next chapter, we bring in heat fluxes by first describing the EP fluxes, then seeing 

how they relate to zonal mean zonal momentum tendency and finally to how the SJ jets may be 
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linked to MMC and eddy forcing. Either this goes here as a bridge, or it follows the K-E eqn in 

chapter 8. 

 

 A momentum-driving mean meridional circulation (Gill’s) and subtropical jet? 

so that is the next section or the next chapter?? Momentum conservation and jet stream 

winds/accel from a stop, etc. but that is already in Jeffreys’ eqn. Should consider discussing the 

subtropical (MMC-driven) jet versus the “eddy-driven” jet. What background is needed for 

that? – apparently it needs Kuo-Eliassen, Kuroda-type analysis, so, maybe not here. However, 

EP fluxes are commonly used to diagnose the maintenance, so does it make sense to introduce 

them here? Could they be a segue? -- to set up the next chapter which considers potential and 

total energy? 

 

6.3 Momentum in isentropic coordinates? 

 The last subsection takes one view of the MMC. However, the MMC looks different in 

isentropic and equivalent-potential temperature coordinates. A brief introduction to the Eliassen-

Palm flux (E-P flux) leads off the discussion.  

Kanno & Iwasaki (2018)? 

 

6.3.1 Eliassen-Palm flux introduction 

 

>Maybe introduce the EP flux link to momentum and vorticity here? Start with 7.4.1-7.4.3 in 

original book. This includes a meridional cell discussion that links heat fluxes as well as 

momentum, so it builds on Gill’s eqn. in immediate prior sub-section. Use that to launch into the 

Karoda papers and then a discussion of MMC-driven and eddy-driven jets. < 

 

 

-----------------------   

 

      See Kuroda papers (2016 and 2017) for NHem and SHem respective winter subtropical jets – 

these use EP fluxes which should be introduced first. They also provide a concise list of papers 

relating to eddy driven versus pure AAM conservation descriptions.  
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      It is easy to emphasize the subtropical jets since they are maxima in the zonal mean zonal 
momentum. The tropics have easterlies and seasonal reversals; Dima et al. (2005) have some 
discussion (but check if that is post or pre eddy-driven jets). Yang et al. (2013) cite Dima et al. 
show how the zonal momentum balance differs inside and outside the Asian monsoon region. 
Kuroda 2016 also cites Dima et al. Caballero (2007) discusses eddy impacts on the H cell 
including the first order momentum balance between acceleration by meridional flux of absolute 
vorticity and deceleration by zonal mean of eddy momentum divergence (u’v’). 

>follow Gill’s eqn< 

 >Also refer back to the mean meridional cells in fig 6.9 (term c?) captured by the Coriolis 

term. 

 

 

6.3.2 Dry and moist isentropic views of momentum balance 

 

>Can the problem be visualized in theta coordinates? The meridional cells look quite different. 

Presumably the eddy fluxes are similar in both coordinates? Start with Johnson (1989, review). 

However the Yamada and Pauluis (2016) provides a nice road map for dry and moist isentropic 

views. Also links to EP flux< 

 

6.4 Summary of Zonal Average Momentum Flow 

 >describe and show the momentum flow schematic< 

 

***GOT TO HERE*** 

<GOT TO HERE> 

 

 

 

6.5 Vorticity dynamics: Rossby wave source (Vorticity tendency, heating and cooling 

specified – in Chap 8?)/ former 6.5 – but that is in the Chap 9 list of how do tropics/extrop 

interact?) reconcilliation of mom flx & jet position?? But already have Newton’s fig 9.8 

matching KE tendencies above or below? But that fig uses KE tendency. Discuss vorticity 

eqn for developing frontal cyclones? – no, that is useful to debunk nonmodal growth. Could 
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do QGPV cons and topographic-generated waves – but keep as input into long waves 

generation question in Chapter 9 

 

.What stationary wave causes that negative max straddling the equator in the eastern Pacific? 

Discuss the SHem in DJF What type of transient causes that equatorial max in the SHem? Must 

be the SPCZ changes 

Discuss the NHem and SHem in JJA 
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Chapter 7 Energetics   

7.1 Overview and context of this chapter. (Motion and temperature in an Energetics context?) 

 

7.2 Kinetic energy and its components 
 
A natural extension of the angular momentum concepts presented in the previous section is the 
analysis of kinetic energy. The total kinetic energy can be partitioned into contributions by the 
zonal mean flow and by the zonally varying flow. Horizontal component expressions for the 

zonal average kinetic energy (KZ = { , }x y
Z ZK K ) are derived first. Then the horizontal total kinetic 

energy component equations (KH = { , }x yK K ) are derived. The eddy kinetic energy (KE = 
{ , }x y

E EK K ) is simply the difference between the other energy components: 

 

x x x
Z E

y y y
Z E

H Z E

K K K
K K K
K K K

= +

= +
= +  (4.10) 

The subscript Z refers to the kinetic energy of the zonal average flow. The subscript “E” refers to 
the kinetic energy of the deviations from the zonal mean flow, i.e., from the eddies. The zonal 
mean of an eddy quantity is zero. The energies here are defined with volume averages. The zonal 
average part of the volume average eliminates all cross products between eddy and zonal mean 
quantities (see Appendix; e.g., u′[u] terms vanish). 

 

V

2 2 2 2

V V

[ ] [ ]
2

[ ] [ ] [ ] [ ]
2 2 2 2

H
uu vvK dxdydz

u v u vdxdydz dxdydz



 

     
                  



 
 (4.11) 

The inclusion of density in (4.8) gives kinetic energy densities; the integrals are thus over the 
mass within a given volume. 
4.2.1 Derivations 
The equations for KZ are derived first. The longitudinal (brackets) average of the horizontal 
equations of motion are taken. (This step parallels eqs. 2.19 and 2.20 in Holton, 1979, except 
using pressure as the vertical coordinate.) The u equation (in flux form) is multiplied by [u] and 
the v equation (also in flux form) by [v]. Bringing the brackets term inside the time derivative 
obtains: 
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2[ ] [ ] [ ] [ ] [ ][ ] tan[ ]
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[ ][ ] [ ][ ] 0x
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f u v u F

ω φ ∂ ∂ ∂
+ + − ∂ ∂ ∂ 

− + =  

 

2[ ] [ ] [ ] [ ] [ ][ ] tan[ ]
2
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zf u v v F g v
y

ω φυ
 ∂ ∂ ∂

+ + − ∂ ∂ ∂ 
∂

+ + + =
∂  

The pressure gradient term integrates out of the [u] equation if mountain torque is neglected. 
That assumption is made here on the basis that zonal mountain torque could be parameterized by 
modifying the Fx friction term. Also, dy = rdφ where φ is latitude and r is the earth’s radius. Two 
terms may be combined: 

 

2

2

[ ] [ ] [ ][ ] tan [ ] [ ]u R uv u uv u R uv
R y r R y

φ  ∂ ∂
− ≡  ∂ ∂   

Integrating the Kx
Z and Ky

Z equations over the mass of the fluid gives: 
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2
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u u R uv R udm dm
t R R y P
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− + =

∫ ∫

∫ ∫

 

 (4.12) 

The integrand (A) is 
x
ZK  as in (4.10). 

 

2 2

(D) (E)

[ ] 1 [ ] [ ][ ]
2
v R vv vdm v dm

t R y P
ω   ∂ ∂ ∂

+ +   ∂ ∂ ∂   
∫ ∫
 

 

 G

[ ][ ] tan [ ][ ]v uv zdm g v dm
r y

φ ∂
+ +

∂∫ ∫


 (4.13) 

 [ ][ ] [ ][ ] 0yf u v dm v F dm+ + =∫ ∫  

The integrand (D) is 
y
ZK  as in (4.10). Parts (B) and (C) have an angular weighting by R. Term 

(E) does not have the R weighting as in (B) because the tan φ term has not been incorporated into 
(E). Term (G) is a pressure work term. 
The Coriolis term appears in both (4.12) and (4.13), but it is merely acting to exchange energy 
between those components. The Coriolis force terms cancel when (4.12) and (4.13) are summed. 
They must cancel since the rotation of the earth cannot be a source of energy to the atmosphere. 
Upon integrating (4.12) over the mass of the atmosphere, the second term can be expanded: 
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2[ ] 1 [ ] [ ] 1 [ ][ ] [ ][ ]

[ ] [ ][ ] ( ) [ ] ( )

u R uv R u R u uv u udm
R R y P R y P

u udm Ruv Ru dm
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ω ω
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   ∂ ∂ ∂ ∂
+ ≡ +   ∂ ∂ ∂ ∂  
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− + ∂ ∂ 

∫ ∫

∫
 (4.14) 

If the integration is over the whole atmosphere (a closed system), then the first right-hand side 
integral in (4.14) is zero since the integrand contains two perfect differentials. The 1/R term 
vanishes since dm = –grRdpdφdλ where λ is longitude. The kinetic energy equations (4.12) and 
(4.13) can be interpreted using either side of the expression in (4.14) depending upon which is 
more convenient. The left-hand side integrand is convergence of relative angular momentum 
weighted by an angular velocity. The right-hand side is the gradient of an angular velocity 
weighted by the momentum flux. 
The observed vertical distribution of momentum flux looks schematically like Figure 4.5a. The 
convergence of the flux builds [u]/R westerly momentum. Since this convergence is largest at an 
upper level, then the jet will be at an upper level (as in the observations; e.g., Figure 3.15). 
Figure 4.5 is a schematic illustration of the link between convergence and [u]. The last integral in 
(4.14) indicates that to change [u]/R, the eddy flux of angular momentum must go up or down 
the gradient of the angular velocity (up the gradient means from lower to higher values). The last 
integral in (4.14) equals zero at the maximum angular velocity. 
Similarly, for meridional motion the second term in (4.13) can be expanded as 
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∫ ∫

∫
 (4.15) 

The interpretation here is essentially the same as for the [u]/R term just discussed except that the 
factor of R is missing. A critical distinction here is that the left-hand sides of (4.14) and (4.15) 
are intuitively useful for understanding local contributions. The right-hand sides are tailored 
more for a global average description since the first integral on the right-hand side vanishes in 
that latter case. 
The final form of the kinetic energy equation for the zonal mean motions is given by (4.16). 

 

[ ] [ ][ ] [ ]
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ZK u uRuv Ru dm
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 [ ][ ] [ ][ ] 0xf u v dm u F dm+ − =∫ ∫  (4.16a) 
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∂
− − − =

∂∫ ∫ ∫
 (4.16b) 

To derive the total kinetic energy equations one multiplies the u equation of motion (in advective 
form) by u and the v equation by v, bringing the terms inside the time integration and then taking 
the brackets average. The derivation is: 

 

2 2 2 2

(A)

2

2 2 2 2

tan 0x

u u v Ru uu
t x R y P

u v zgu fuv uF
r x

ω

φ

       ∂ ∂ ∂ ∂
= + +       ∂ ∂ ∂ ∂       

∂
− + − + =

∂



 (4.17) 
Term (A) is rearranged by using the continuity equation in pressure coordinates and the chain 
rule: 
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The equation is now in flux form. The meridional component kinetic energy is similarly 
manipulated: 
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One notes that 
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Applying the zonal average yields: 
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Integrating over the entire mass of the atmosphere, the second and third terms vanish using ω = 0 
at the top and bottom on average. The first terms are just the rate of change of total kinetic 
energy 
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 (4.19a) 
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 (4.19b) 
The first integral is a conversion between Kx and Ky; it merely states that the Coriolis terms must 
cancel in the net summation; planetary rotation cannot be a source of energy. 
The two equations in (4.19) indicate that the time rate of change of total kinetic energy is due to 
the work done by pressure forces and the work done by friction. 
The component eddy kinetic energy equation is derived by subtracting (4.16) from (4.19). 
Component terms in (4.11) are combined in these steps. 
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The first integral converts kinetic energy between zonal and eddy components. The second 
integral is related to vertical overturnings. A closed system model is used in the section on 
available potential energy (§4.5.2) to elucidate these overturnings; they are conversions between 
kinetic and available potential energy. The last integral is frictional extraction. 
The five parts of the first integral can be rearranged and combined. For example: 
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R is not a function of P, so it cancels out. Using the chain rule obtains: 
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Terms like (B) will contribute to the final KE equation. Terms like (D) combine and cancel from 
the continuity equation. Terms like (C) combine to form: 
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where V2 = (v, ω) and ∇2 = (∂/∂y, ∂/∂P). Term (E) vanishes when integrated over the entire mass 
of the atmosphere. Term (E) is a two-dimensional perfect differential because longitude was 
removed from the problem by the brackets average. 
When the eddy kinetic energy tendency is integrated over the entire mass of the atmosphere 
(dm), only squares of the primed quantities are left. 
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4.2.2 Interpretation 
The schematic features of the momentum budget are seen in the following observations. Figure 
4.6 shows a calculation of the frictional torque exerted by the atmosphere on the surface of the 
earth, as determined from surface wind and pressure observations. Oort (1985) also notes that 
oceans exert a torque upon the solid earth in a manner similar to the atmospheric mountain 
torque; the dashed line in Figure 4.6 shows this “continental” torque. Negative continental torque 
is created by sea levels that slope upward from east to west. The atmospheric circulations impart 
frictional torque onto the oceans, which in turn transfer the torque to the solid earth. 
Consequently, the two curves in Figure 4.6 are quite similar. Both curves show the atmosphere 
gaining momentum in the tropics and losing momentum in the extratropics. To balance the gains, 
there must be large poleward transport of absolute angular momentum occurring in the 
subtropics of both hemispheres. For net balance by the earth, atmosphere, and oceans, the solid 
earth must transport angular momentum the opposite way. Oort (1985) proposes the 
controversial notion that the slipping of the crust along properly oriented fault lines could 
accomplish the task. 
The time rate of change of kinetic energy is proportional to friction and to the convergence of 
momentum fluxes. From (4.14) and (4.15) the latter is proportional to the gradient of momentum 
transport weighted by the angular velocity. As detailed in the Appendix, many different physical 
phenomena contribute to a [uv] momentum flux. Figure 4.7 illustrates the relative contributions 
by several classes of phenomena. The Appendix defines the notation.) The discussion of the 
observed momentum fluxes’ contribution to zonal mean kinetic energy balance proceeds as 
follows. The fluxes by the mean meridional cells are discussed first, then the eddy fluxes, and 
finally both circulations are considered together. 
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4.2.2.1 Zonal mean cells transport 
The contribution by the mean meridional cells has the opposite sign in the middle latitudes as it 
does in the tropics (Figure 4.7d). The sign reversal follows from the three-cell description of the 
mean meridional circulation. ([u] is large and mainly westerly in the upper troposphere; at that 
altitude [v] is poleward in the subtropics and equatorward in middle latitudes.) As mentioned in 
§3.3, the Hadley cell is much stronger in the winter hemisphere. The poleward fluxes in the 
subtropics (Figure 4.7d) reflect that seasonal change. 
Figure 4.8 illustrates the vertical variation of the northward momentum flux due to the mean 
meridional cells. The vertical variation is schematically deduced in Figures 4.8a,b; confirming 
observations are shown in Figure 4.8c. The Northern Hemisphere Hadley cell has [v] < 0 at low 
levels and [v] > 0 in the upper troposphere, where [u] is negative (easterly, shaded in Figure 
4.8a). When a vertical average is taken, there is some cancellation, but the low-level contribution 
is greater in the tropics because [u] is greater at low levels (Figure 3.14). Thus Figure 4.7d shows 
northward (positive) transport. In the subtropics [u] and [v] are both positive in the upper 
atmosphere and the vertical average transport is strongly poleward. The Northern Hemisphere 
Ferrel cell has positive [v] at low levels and negative [v] above, while [u] is positive (westerly) 
throughout. Again there is some cancellation when a vertical average is taken but the westerlies 
at the jet stream level are much stronger than the low-level zonal wind. Hence, the vertical 
average is negative in midlatitudes as seen in Figure 4.7d. 
4.2.2.2 Eddy transports 
(a) Momentum transport by the transient eddies (Figure 4.7b) is much greater than that by the 
mean meridional circulations. Hence, eddies are the primary mechanism maintaining the zonal 
mean zonal flow. One could expect this. The velocity in the mean meridional cells ([v]) is an 
order of magnitude smaller than the typical v measured instantaneously at a point. So one 
anticipates that [u][v] << [u′ v′], even though [u] is large. (b) Transient eddy transports (Figure 
4.7b) are less during summer, especially in the Northern Hemisphere. The eddy transports are 
greatest at about 30° latitude in both hemispheres. (c) The stationary wave flux (Figure 4.7c) is 
only significant in the Northern Hemisphere; it is quite large during winter. The standing wave 
pattern includes poleward transport in midlatitudes and equatorward transport at high latitudes. 
The former is seen in the characteristic shape of the long wave troughs. Those troughs are often 
oriented southwest to northeast, an orientation that creates poleward momentum flux (Figures 
4.9, 5.9, 6.8, and 6.9). The equatorward momentum flux at high latitudes can be understood from 
the typical life cycle of the frontal cyclones. As these storms grow, they move poleward as well 
as eastward. Eventually they often merge with the “semi-permanent” Aleutian and Icelandic 
Lows. At this point they decay, and one mechanism of decay (barotropic instability) has eddy 
momentum convergence. That convergence creates equatorward fluxes at high latitudes. (d) 
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Classical theories about the general circulation (§1.3) completely neglected these eddy fluxes 
because eddies were not included. Those theories stated that the pressure forces, modified by the 
Coriolis effect, were the generators of zonal kinetic energy. 
Even though the eddy velocities (u′, v′) have no zonal mean, the product of these velocities can 
have a nonzero zonal mean if the eddy has a special structure. Schematic diagrams (Figures 4.9 
and 4.10) illustrate how the eddy momentum flux can have a zonal average contribution. For 
circular low and high pressure patterns (Figure 4.10), there is no net contribution to the zonal 
average eddy momentum flux even though the term may be locally large; the contributions to the 
zonal average on the east and west sides of the low (or high) cancel. The eddies must have 
asymmetry (Figure 4.9) to obtain a net zonal average eddy momentum flux. More precisely, 
there must be horizontal tilts of the trough and ridge axes. The horizontal tilts deform, in effect 
rotate, the location of maximum and minimum u′v′. A northwest to southeast tilt will give a 
southward flux (u′v′ < 0) in the middle latitudes by rotating the u′v′ pattern clockwise. A 
southwest to northeast tilt will give a northward flux (u′v′ > 0) by rotating the u′v′ pattern in 
Figure 4.10 counter clockwise. The direction of the flux is understood as an advection of eddy 
zonal momentum (u′) by the eddy meridional velocity (v′) in the meridional direction. Hence u′v′ 
> 0 can occur with northward advection (v′ > 0) of positive zonal momentum (u′ > 0). 
Equivalently, southward advection (v′ < 0) of easterly momentum (u′ < 0) also is a northward 
flux of westerly zonal momentum. This interpretation follows simply because the u′v′ terms in 
(4.20) originate from the meridional advection term in the zonal momentum equation. Zonal 
averages are fundamental to the discussion here. If these terms were examined for local building 
or damping the jet, then one would need to retrieve the cross-product terms (e.g., [u]v′ type 
terms) that were neglected previously. 
The eddy momentum fluxes, like the fluxes from mean meridional cells, are largest near the 
tropopause level. For the eddies, the maximum transport is located close to the maximum 
velocity found for the tropospheric jet streams described earlier. Figure 4.11 shows observed 
annual mean momentum fluxes by all circulations. The maximum transient eddy contribution to 
the total flux is about 8 to 10 times greater than that by meridional cells or standing eddies. 
Transient eddy fluxes are shown in Figure 4.12e and f. Inspection of Figures 4.8c, 4.11, and 
4.12e and f shows that the Hadley cells reinforce the eddy fluxes but the Ferrel cells oppose the 
eddy fluxes in midlatitudes. This point is returned to in the theoretical explanation of the Ferrel 
cell given in §6.3.2. 
At this stage some care is needed to account for the angular velocity being used. The cosine of 
latitude in R shifts the location of maximum [u]/R poleward of the climatological jet stream 
position. Also, the cos φ is missing from the numerator of the eddy term displayed in Figure 
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4.11; correcting for that shifts the eddy momentum flux maximum slightly equatorward. With 
thes 

e adjustments, the momentum transport is directed up the gradient of the angular velocity, at 
least on the equatorward side of the jet. However, the match between the [u]/R and momentum 
convergence fields is not exact. 
Figure 4.12 shows other observations, based upon diagrams in Newell et al. (1970). R is not 
included. If one weights the momentum fluxes (Figures 4.12e and f) by [u]/R, then the maximum 
change of the mean kinetic energy will be near the 200 to 300 hPa layer and around 40 N and 30 
to 50 S in the respective winter seasons. These resultant locations match the locations of the jet 
streams better than simply using the momentum convergence. These locations are poleward of 
where the eddy momentum convergence (a gradient of the quantity diagrammed) is greatest. 
There are two matters to consider and §6.3 and §6.5 return to this subject. First, the eddy 
momentum and heat fluxes occur in a way that destroys thermal wind balance. To regain the 
balance, a Ferrel cell motion is set up that shifts the position of the jet equatorward from the 
location of maximum momentum convergence (§6.3). Second, Figure 4.10 shows that the 
subtropical jets seem to lie at the boundary between the Ferrel and Hadley cells. In §6.5 the 
linkage between jets and meridional cells is shown to more subtle. The full explanation of these 
mechanisms requires further background and that explanation is left to §6.3 and §6.5. 
The discussion so far has centered around the observed sources of the meridional flux of zonal 
momentum ([uv]). This flux is an important element in the maintenance of the zonal mean jet 
streams. The zonal and eddy kinetic energy can be changed by other processes. The eddy kinetic 
energy equation (4.20) groups the processes into four categories. The zonal mean kinetic energy 
equation can be similarly grouped. The four groups in (4.20) are specifically interpreted next. 
● Term (A) contains fluxes of eddy momentum weighted by the zonal mean angular zonal 
velocity gradient. Term (A) is a conversion between different forms of kinetic energy; the same 
term but with opposite sign is found in (4.16). 
● Term (B) contains fluxes of eddy momentum weighted by the mean meridional velocity 
gradient. Terms (A) and (B) together are sometimes labelled the “barotropic” energy conversion 
terms. Since [v] << [u] and [v′ v′] ~ [u′ v′], (B) tends to be smaller than (A). The same term, but 
with opposite sign, occurs in (4.16). 
● Term (C) is comprised of work done by pressure forces. The correlations of eddy velocity 
and eddy pressure gradient are sometimes categorized as “baroclinic” terms. The term is 
conversion between potential energy and eddy kinetic energy, so a related term is found in the 
available potential energy equation. To visualize the role played by this term, one must 
understand the concept of available potential energy. Thus, term (C) is examined in much greater 
detail in §4.5.2. 
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● Term (D) includes the net loss of kinetic energy due to various frictional processes. 
Terms (A) and (B) in (4.20) can either be a source or sink. The variation in the sign of these 
terms will be described in more detail when baroclinic and barotropic instability theory are 
considered over limited longitudinal segments. The pressure work terms (C in 4.20) can be a 
source or a sink as well. The frictional dissipation term (D) is always a sink. It is essentially a 
leakage of energy down in scale to turbulent length scales. 
The subject of angular momentum is returned to in §6.2 when more recent theoretical ideas about 
the general circulation are discussed. The reader need not complete this chapter in order to 
follow the discussion in §6.2. This section briefly considered kinetic energy; the next section 
examines the role and definition of potential energy. After that, the linkage between kinetic and 
potential energy is considered. 
 

7.3 Potential energy 

 

7.3.1 Dry and moist static energy 

Heat fluxes in terms of small diff between large, opposite fluxes? Says something about 
efficiency which also implies Carnot cycle. Maybe this belongs at start of the APE 
discussion? 

7.3.2 APE formulations 

 

7.4 Component (limited volume) energetics 

Bring back KE at end as did before? 

7.5 Baroclinic and Barotropic Energy Conversions 

 

7.6 Observed heat fluxes 

 

6.4 Momentum and Heat parallel cycles, but this page:  
http://atm.ucdavis.edu/~grotjahn/course/atm240/momntm.htm 

Needs energetics. So, both mom/KE and heat/APE together makes a nice ending. 

 

http://atm.ucdavis.edu/%7Egrotjahn/course/atm240/momntm.htm


6-59 
 

  



6-60 
 

HOMEWORK problems 

 

1. The global mean relative atmospheric angular momentum is about 1.5 x 108 J-s.  

a. Assuming a simple “solid body” superrotation flow of u = usbr cosφ, find us for an isothermal 
atmosphere at 270K and 105 Pa surface pressure on a spherical Earth (i.e. no topography). What 
is usbr? Hint: assume hydrostatic conditions and a constant scale height for the vertical 
integration.  

b. Part a) would be unrealistic several ways. One fault is it would speed up the Earth’s rotation. 
To alleviate that fault, simplify the pattern of surface easterlies and westerlies by assuming the 
zonal wind is zero at the surface. Define crude “midlatitude jet streams” by assuming u = usj sin( 
πp / 105) sin2(2 φ). Assume thermodynamic and hydrostatic conditions as in part a.). What is usj? 
How does it compare with actual jet stream maxima? How would lowering the latitude of the 
peak in u change the estimate of usj? How would moving the jet to a lower pressure change usj? 

 

2. Solid Earth deceleration example in Egger et al: 

To get a feeling for the orders of magnitude involved, let us consider a cubic mountain block of 
1000 m height, zonal extension of 100 km, and meridional extent of 1000 km at 45_N. If the 
surface pressure at the western wall exceeds that in the east by 10 hPa, (20) gives To3 = -4.5 
Had. The corresponding deceleration of globally superrotating atmospheric flow is 
approximately -0.03 m s_1 if the torque acts for 1 d and if there are no mass shifts.  

 

3. base problem on momentum exchanges in atm and ocean, see p. 246 in Peixoto and Oort 
book. 
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Figure 6.1 Geometry indicating the distance from the axis of rotation (r cosφ) at latitude φ. 
Assumptions include that the Earth is a sphere and the thickness of the atmosphere can be 
neglected. 
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Figure 6.2 Momentum equation schematic geometry. a) Latitudes φ1 along which surface S1 is 
defined and φ2 along which surface S2 is defined bound the volume in (6.4) where subscript 1 is 
South of subscript 2. The bounding integrals in (6.4) have different surface areas due to differing 
latitudes and topography. b) Orientation of the pressure values p1 and p2 in (6.7) where one 
mountain interrupts the integral around the Earth. More than one topographic feature can 
interrupt the integral and contribute to the mountain torque term. Longitude increases going 
counter-clockwise in this view from above the North Pole.  
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Figure 6.3 Notation for stress tensors in the ‘x’ direction. Stress applied along the top and 
bottom surfaces in the x direction, indicated by arrows 4 and 2 contribute to τxz. A viscous 
pressure force in the x direction is τxx and labelled arrow 5. Stress tensors in the direction of 
arrows 1 and 3 contribute to τxy. 
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Figure 6.4 a), b) Seasonal …------------------- Units are Hadleys per 2.5 degrees latitude. Lines 
redrawn and rescaled from Huang et al. (1999) including symbols from Newton (1972) to 
facilitate comparison with Figure 6.5.  
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Figure 6.5 a),b)Terms from vertically-integrating the angular momentum equation per unit mass 
(6.13) in spherical geometry for unit latitude ranges. The solid line is from the meridional flux, 
positive when increasing zonal momentum. The dashed line is the topographic or mountain 
torque. The friction term (dotted line) is not explicitly calculated but estimated as a residual. a) 
January-March and b) July – September data from 1979-93. The units are ‘Hadleys’ (=1018 kg 
m2 s-2) per 2.5 degrees latitude. c), d) Corresponding seasonal contributors to the “Ruv” terms in 
(6.13) positive when directed northward; note that the meridional derivative of these terms is 
taken in the equation. In middle and subtropical latitudes the transients dominate, stationary 
eddies are strongest in NHem midlatitudes, and the MMC part is mainly from the winter 
hemisphere Hadley cell. The units are 1012 kg m s-2. Redrawn from Karoly et al. (1998) 
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Figure 6.6 Horizontal variations of key parts of AAM. a) Vertically integrated long term mean 
“zonal wind part” of axial angular momentum, units: 1022 kg m2 s-1. This annual mean figure 
compares well with the seasonal mean horizontal winds in figure 4.14. Two torques in the AAM 
tendency equation: b) friction and c) mountain, with units 1022 kg m2 s-2. The friction torque has 
echoes of the zonal component of low-level wind vectors in figure 4.8. NCEP-NCAR reanalysis 
data from 1948-2015. Reproduced from Gong et al. (2019)  
**Need permission** 
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Figure 6.7 Simulated sea level displacements caused by realistic (a) total surface wind stress 
tensor and (b) non-rotational surface wind stress tensor. Contour interval differs: it is 10 mm in 
(a) and 1 mm in (b). Dotted lines indicate negative values. Redrawn from Yoshioka et al. (2002). 
Their model limitations exclude the Antarctic Circumpolar Current so the contours are not 
plotted south of 57.5 S. See the original reference for details. 
**Need Permission** 
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Figure 6.8 Schematic diagrams showing how geostrophic winds (thin arrows) around non-
circular eddies can cause poleward [ ]u v′ ′ fluxes (double-shafted arrows). Examples shown are as 

follows. (a) While there are momentum fluxes on both sides of a circular low, they cancel on a 
zonal average across that low. (b) A low with tilted horizontal troughs will have non-zero zonal 
average momentum fluxes and the direction of the flux depends on the orientation of the tilted 
troughs. (c) A schematic upper level tilted ridge and trough pair and northward motion 
embedded in a stronger zonal flow where both configurations produce positive [ ]u v′ ′  flux. This 

combination occurs in the tropical north Atlantic across northern Africa in Figure 4.3a and 4.17a. 
(d) Surface subtropical high such as seen in the NHem of Figure 4.4c. (Panels revised from 
Grotjahn, 1993). 
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Figure 6.9 Zonal winds a) and b) and two parts of the meridional flux of zonal momentum at 
200 hPa during DJF (left column) and JJA (right column) including the zonal average in right-

side panels. b) and e) show time average u v′′ ′′  while c) and f) show the contribution by stationary 

waves u v′ ′ . Dashed contours indicate easterly flow in a) and d) with westerly winds >40 m/s 

shaded. Southward flux in the remaining panels is shaded. ERA5 data used are from 2001-2020. 
Contour interval is 5 m/s in a) and b); 40 m2/s2 in the other panels. The scale changes for the 
zonal means plotted in panels e) and f). 
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Figure 6.10 Key momentum balance terms in two opposite seasons. a) Schematic representation 

of the MMC and u    during DJF based on figures 4.9 and 4.13. During related season JFM, 

selected terms in the u    tendency equation: b) horizontal divergence of eddy horizontal 

velocity covariance, c) MMC advection of u   , d) (ageostrophic) Coriolis term. During the 

opposite season: e) as a) except for JJA, f)-h) as b)-d) except for JAS. Panels b-d and f-h are 
reproduced from Karoly et al. (1998). (need permission) 
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