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Abstract We analyze large‐scale statistically meaningful patterns (LSMPs) that precede extreme
precipitation (PEx) events over Northern California (NorCal). We find LSMPs by applying k‐means clustering
to the two leading principal components of daily 500 hPa geopotential height anomalies two days before the
onset, from October to March during 1948–2015. Statistical significance testing based on Monte Carlo
simulations suggests a minimum of four statistically distinguished LSMP clusters. The four LSMP clusters are
characterized as Northwest continental negative height anomaly, Eastward positive “Pacific‐North American
Pattern (PNA),” Westward negative “PNA,” and Prominent Alaskan ridge. These four clusters, shown in
multiple variables, evolve very differently and have differing links to the Arctic and tropical Pacific regions.
Using binary forecast skill measures and a new copula‐based framework for predicting PEx events, we find
LSMP indices that are useful predictors of NorCal PEx events, with moisture‐based variables being the best
predictors of PEx events at least 6 days before the onset, and the lower atmospheric variables being better than
their upper atmospheric counterparts any day in advance tested. To ensure statistical rigor, the LSMPs analyzed
here (with the modified acronym) include local tests of both significance and consistency, which are not always
featured in the literature on large‐scale meteorological patterns.

Plain Language Summary Like some other weather extremes, extreme precipitation events can be
organized and triggered by large‐scale circulation patterns (horizontal span > 1,000 km) in several variables.
Each of these events clusters around one of a minimum of four distinct collections of large‐scale circulation
patterns that evolve to cause extreme precipitation over Northern California. Although these four clusters have a
common low‐pressure system near Northern California at event onset, they differ from each other in the
orientation, evolution, and spatial extent of low‐ and high‐pressure systems over a much larger region. Each
cluster has different links to properties in distant regions, such as the tropical Pacific Ocean and Alaska, as well
as regions in between. We construct indices from statistically significant and commonly occurring parts of these
collections. Such indices are useful large‐scale predictors of smaller‐scale extreme precipitation events with
atmospheric moisture‐based variables being the best predictors.

1. Introduction
Extreme precipitation (PEx) over California is marked by a large interannual variability (Dettinger et al., 2011).
For example, record rainfall during the winter of 2016–2017 was followed by record dry conditions in the fall and
winter of 2017–2018 (Gershunov et al., 2017). Such a large variability in rainfall is a concern from both drought
(Shukla et al., 2015; Swain et al., 2014) and flood perspectives (e.g., Feb 2017 Oroville Dam disaster; White
et al., 2019). Projections of future precipitation suggest an increase in high‐intensity precipitation extremes and a
further enhancement in interannual variability (Polade et al., 2017; Rhoades et al., 2020; Swain et al., 2018). Since
changes in PEx over California have severe impacts on activities such as water management, dam protection, and
agriculture, it is important to understand both the large and small‐scale patterns associated with PEx over Cal-
ifornia. Although small‐scale local features (e.g., local orography and moisture ascent) pose problems for climate
models due to limitations such as inadequate horizontal and vertical resolutions, imperfect parameterizations, and
cloud microphysics, large‐scale circulation mechanisms are largely reproduced in climate model simulations
(e.g., Agel & Barlow, 2020; Boroneant et al., 2006; DeAngelis et al., 2013; Gutowski et al., 2003). This study
explores the large‐scale circulation patterns associated with PEx events over Northern California (NorCal).
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Large‐scale meteorological patterns, also called large‐scale statistically meaningful patterns (LSMPs), associated
with extreme events are the synoptic‐scale atmospheric and surface conditions that precede the events (e.g., PEx,
extreme heat, or cold‐air outbreaks). LSMPs are different from teleconnections (e.g., the El Niño‐Southern
Oscillation (ENSO)) in several ways. First, LSMPs can be high‐frequency patterns based on instantaneous data
(as in this report). Second, LSMPs are the specific meteorological patterns that occur in connection with an
extreme event type, whereas teleconnections are recurring, slowly evolving, persistent, large‐scale patterns (also
known as low‐frequency modes of variability) that can be defined without any reference to extremes (Barlow
et al., 2019). Although local factors such as lifting, static stability, and moisture availability control the intensity
and duration of PEx (e.g., Moore et al., 2020; Neiman et al., 2002), LSMPs that determine or control these factors
vary with season, region, and definition of an extreme event.

As outlined in Grotjahn et al. (2016), multiple methods can identify large‐scale circulation features associated
with an extreme event. A common method is the construction of composited maps of meteorological variables
conditioned on the occurrence of an extreme event type (Collow et al., 2016, 2020; DeAngelis et al., 2013; Gao
et al., 2014; Grotjahn & Faure, 2008). Compositing‐based studies show that the precipitation days over NorCal
are locally associated with a low‐pressure system and associated extratropical cyclones in the Northern Pacific off
the west coast of the United States (e.g., Gao et al., 2014; Grotjahn & Faure, 2008; Neiman et al., 2008). These
weather systems act to channel winds and moisture into narrow structures called atmospheric rivers (ARs)
(Newell et al., 1992; Ralph et al., 2006; Zhu & Newell, 1998) that are directed toward the coast to produce
precipitation over land (Fish et al., 2022; Lamjiri et al., 2017; Smith et al., 2010). Another strong feature of these
large‐scale patterns is the zonally elongated jet over the North Pacific further extended toward the west coast of
the United States (Payne & Magnusdottir, 2014).

However, when looking at large scales, locally persistent low‐pressure systems are found to be embedded in
different circulation patterns, suggesting that there could be more than one large‐scale pattern that can be
associated with PEx events over NorCal. Popular methods that can identify these different circulation features are:
empirical orthogonal function (EOF) analysis (Guirguis et al., 2018, 2020), self‐organizing maps (SOMs;
Guirguis et al., 2019; Loikith et al., 2017), and clustering analysis (Agel et al., 2018; Fish et al., 2022; Moore
et al., 2021; Zhao et al., 2019). Loikith et al. (2017) demonstrated that the majority of the DJF PEx days over
Northern California occur for SOM node 1 (followed by node 5), identified by a surface low pressure centered to
the northwest of the northwestern continental United States, a 500 mb geopotential height (Z500) trough axis
offshore, and the main axis of the 250 mb jet zonally oriented over central California. Guirguis et al. (2020), using
SOM analysis, demonstrated that wet and dry conditions over California result from interactions between four
North Pacific circulation regimes (their NP4 regimes) on daily timescales. D. Chen et al. (2021) found that their
“California precipitation mode,” identified as the third principal component (PC) of the Z500 field, is closely
linked to California extreme precipitation days. Guirguis et al. (2019) used nine SOM nodes trained on Z500
anomalies to characterize different types of landfalling ARs at 40°N impacting NorCal. They showed that these
different AR types occur during different phases of large‐scale teleconnection patterns such as ENSO, Pacific
decadal oscillation (PDO), and Pacific North American (PNA) pattern. It is worth noting that some of the nine
chosen SOM nodes shared spatiotemporal commonalities and might not have been statistically distinct from one
another. Fish et al. (2022) identified six clusters of large scale patterns associated with AR events affecting
California and explored the frequency of clusters during the ENSO phases. Moore et al. (2021) found four
categories of large‐scale atmospheric patterns for long‐duration (>7 days) heavy precipitation events over the
West Coast of the United States. Out of these four categories, two are identified by a strong zonal jet stream over
the eastern North Pacific, and the two other patterns are identified by atmospheric blocking over the central North
Pacific and the Bering Sea‐Alaska region, respectively.

These studies provide useful information about how PEx forms over NorCal. Nonetheless, there are five aspects
of research methodology to consider. First, there is a misconception about what constitutes an LSMP. As elab-
orated in Grotjahn (2011), an LSMP of a relevant variable, often meteorological (e.g., 500 mb geopotential height
anomaly field) is more than some aggregate field; it also must indicate what is important in the field. Therefore, an
LSMP includes two additional integral features: significance and consistency. The significance establishes if an
anomalous pattern (e.g., sea surface temperature anomaly) statistically differs from what occurs by chance.
Consistency, as the name suggests, refers to how often an anomaly of the same sign occurs at a grid point or
location. Previous studies showing aggregate patterns often overlook the consistency assessment. We argue that
significance and consistency are integral parts of an LSMP for two reasons: (a) High significance does not
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guarantee high consistency (e.g. Grotjahn & Faure, 2008 and (b) any future changes in either significance or
consistency may suggest dynamical changes impacting the occurrences of extremes. Second, a majority of
previous studies have considered a small spatial domain around NorCal. However, as the name suggests, LSMPs
are large‐scale patterns (and may show far teleconnections, too) that may not be fully captured by such small
domains. Third, what is the minimum number of LSMP clusters necessary to best describe northern California's
PEx events? This question has direct relevance for climate model evaluation, as any model expected to reasonably
simulate PEx should be able to reproduce the spatial pattern and frequency of each observed clustered pattern.
Fourth, most studies use concurrent meteorological conditions (same day) for identifying and clustering large‐
scale patterns associated with PEx events (e.g., Barlow et al., 2019). Analogous to NorCal heat waves, which
have a similar pattern at their onset that is arrived upon from two different synoptic evolutions (Lee & Grot-
jahn, 2016), NorCal PEx events might also be arrived at by more than one synoptic evolution. Indeed, Figure 6 in
Grotjahn and Faure (2008) implies more than one pattern as individual events have a highly significant Alaskan
ridge, whereas other events have a deep trough over Alaska. From causal and predictability perspectives, the
relevant LSMPs should be identified from the meteorological conditions persisting before the event. Fifth,
although a limited number of studies have shown the predictability of PEx events using LSMPs as predictors (e.g.,
Gao & Mathur, 2021), a comprehensive approach for probabilistic predictions of precipitation using LSMPs as
predictors is missing.

In this work, we examine the LSMPs associated with PEx over NorCal to address the limitations mentioned
above. A PEx event is defined here as the 24‐hr precipitation total of more than the 95th percentile of the daily
precipitation averaged over a region of NorCal. We also present a copula‐based framework for making proba-
bilistic predictions of precipitation. Broadly, our main objectives are:

1. Identify clusters of LSMPs that persist before the onset of the PEx over NorCal;
2. Statistically estimate the minimum number of distinguishable LSMP clusters leading to PEx events over
NorCal;

3. Examine the evolution of a comprehensive list of meteorological LSMPs leading to the PEx event onset;
4. Use a copula‐based framework to make a probabilistic prediction of PEx events over NorCal using LSMP
indices as predictors.

The LSMP clusters are identified by applying the k‐means clustering algorithm to the two leading principal
components of the 500 hPa daily geopotential height anomalies (Z500) two days before the onset (lag 2). Along
with the Z500, we show the evolution of LSMPs associated with the other related quantities such as 850 hPa and
300 hPa velocity fields, streamfunctions at 300 and 850 mb, surface temperature, integrated vapor transport
(IVT), and surface pressure.

This paper strongly complements the paper byMoore et al. (2021), which focused on synoptic dynamics during 7‐
day‐long PEx events impacting NorCal. Here, we focus on predictability, remote connections, and the creation of
1‐day or longer PEx events impacting the same region. Although Moore et al. (2021) include all events, we
include only the largest precipitation day in a multi‐day precipitation event and exclude “mixed” events which
cannot be clearly assigned to a single cluster. We do this to have more distinct clusters and are enabled to do so
because we have larger sample sizes. Our patterns are sharper because we are combining ’instantaneous' fields. In
contrast, the fields for each event in Moore et al. (2021) are smoothed by their time averaging, during which
weather systems move across their domain. We also employ a rigorous test to see the minimum number of clusters
needed for them to be significantly different. We search for LSMPs over a larger region and, in so doing, find
distant connections not found within original focus region of Moore et al. (2021). Although Moore et al. (2021)
present the significant parts of patterns, we apply a more complete LSMP analysis, including applying signifi-
cance and consistency tests at each grid point, which are critical for assessing predictability. Following this
introduction, the data and methods are discussed in Section 2, results in Section 3, and an overall summary is in
Section 4.

2. Data and Methods
In this study, we use daily 0.25◦ × 0.25◦ precipitation data over 1948–2015 from the National Oceanic and
Atmospheric Administration Climate Prediction Center (CPC) Unified CONUS data set (CPC; M. Chen
et al., 2008; Xie et al., 2007) to identify PEx events over the NorCal region. The gridded CPC data are constructed
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from the quality‐controlled station data using the optimal interpolation (OI) algorithm, which exhibits relatively
small degradation in performance statistics over regions covered by fewer gauges. Previous studies suggest that
the performance of the CPC data set in capturing different aspects of extreme precipitation is similar to the other
high‐resolution gridded data sets (e.g., Akinsanola et al., 2020; Srivastava et al., 2020; Timmermans et al., 2019).
To identify extreme precipitation events, we first calculate the 24‐hr spatially averaged precipitation P̄ by taking
the mean of 24‐hr nonzero precipitation values (i.e., P> 0 mm/day) at each grid point across the NorCal region
defined as 124.5°W to 119.25°W and 38.69°N to 43.17°N. A PEx event is identified if a 24‐hr P̄ magnitude
exceeds the 95th percentile of P̄ values over 1948–2015. This criterion identifies a total of 489 daily precipitation
events. However, some of these events are on consecutive days. Since such events on consecutive days are not
exclusively independent, we pick the largest precipitation day in a 3‐day period. This procedure reduces the total
number of exclusive events to 311. The PEx dates, along with cluster assignments, are listed in Supporting
Information S1.

For the LSMP analysis, we use the NOAA‐CIRES‐DOE Twentieth Century Reanalysis version 3
(20CRv3, 1836–2015; Slivinski et al., 2019). The 20CRv3 uses an Earth system model to assimilate surface
pressure observations with prescribed lower boundary conditions from observed sea surface temperature and sea‐
ice concentrations and bounded by prescribed radiative forcing to generate a four‐dimensional global reanalysis
product. Compared to its predecessor, 20CRv2c, the 20CRv3 uses upgraded assimilation methods, including an
adaptive inflation algorithm, a higher resolution forecast model and a larger set of pressure observations. These
improvements remove spin‐up effects in the precipitation fields, reduce sea‐level pressure bias, and improve the
representation of storm intensity in the reanalysis product (Slivinski et al., 2019).

We use 20CRv3 because it provides a long period of data by consistently assimilating long‐term surface ob-
servations while avoiding inconsistencies found in reanalysis products (e.g., long‐term trends) arising from
changing observational data sets (Fujiwara et al., 2017; Long et al., 2017; Slivinski et al., 2019). The feasibility of
“reanalysis using only surface pressure data” is investigated by Compo et al. (2006) who report that “by using an
advanced data assimilation system based on an ensemble Kalman filter, it would be feasible to produce high‐
quality maps of even the upper troposphere using only surface pressure observations.” Slivinski et al. (2021),
in their analysis of 20CRv3 find that upper‐air fields from 20CRv3 in the late twentieth century and early twenty‐
first century correlate well with full‐input reanalyses, and the correlation is predicted by the confidence fields
from 20CRv3. They also state that the skill of analyzed 500 hPa geopotential heights from 20CRv3 for the period
1979–2015 is comparable to that of modern operational 3–4‐day forecasts, and 20CRv3 performs well on climate
timescales. Slivinski et al. (2021) also note that biases in some variables become substantial above 300 hPa, so we
restrict our analysis to lower levels. To further investigate if 20CRv3 produces middle atmospheric fields
comparable to the full reanalyses, we compare the temporal evolution of IVT over 1970–2015 in 20CRv3 with
that in ERA5. We choose IVT for the comparison as IVT is a moisture‐based field that includes contributions
from specific humidity, surface pressure, zonal and meridional winds, and hence, it is a good indicator of the
performance of 20CRv3 in capturing middle‐to‐lower atmospheric circulation patterns. Indeed, we show below
that IVT emerges as the single best predictor of PEx events. We find that the total IVT fields (as well as IVT
anomalies and LSMPs) during the PEx events are strikingly similar in the two data sets, with the spatial corre-
lation between the two data sets being 0.98 or higher for all four clusters. Relevant Figures S1–S12 are included in
Supporting Information S2.

In this study, we analyze the following variables from 20CRv3: surface pressure (Ps), surface temperature (Ts),
IVT (IVT), horizontal and vertical velocity fields (U,V,ω), atmospheric temperature (T), geopotential height (Z)
and streamfunction (ψ) at 300, 500, and 850 hPa levels. We compute the daily anomalies of these variables by
simultaneously regressing out the annual cycle and linear trend from the daily data over the period 1948–2015.
Though not shown here, this approach of removing the annual cycle and trend from the data ensures that no
residual trend or annual cycle remains present in the final anomaly product.

2.1. Clustering Procedure

For the clustering analysis, we apply a k‐means clustering algorithm to the two leading PCs of the 500 hPa
geopotential height anomalies two days before (lag 2) (Za500l2 ) the event onset. The cluster domain is 180°W to
100°W and 25°N to 75°N. The two leading PCs explain around 54% of the variance. We estimate the significance
of clusters using a Monte Carlo procedure following Straus (2018), described as follows. For each chosen number
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of clusters (k = 1,2, 3… etc.), we compute the variance ratio (R = Δ/S) for the first two PCs of Za500l2 , where, Δ
is the spread among the cluster centroids (also called between‐sum‐of‐squares) and S is the spread within clusters
(also called total‐within‐sum‐of‐squares). In cluster analysis, we seek to minimize the spread within clusters, S. A
maximum of the variance ratio R corresponds to a minimum of S. We repeat the above‐mentioned procedure 100
times with synthetic data sets. The synthetic data sets are generated from the multivariate Gaussian distribution
computed using the same mean and covariance as in the data (here, the two leading PCs). For each iteration, we
compute Rsample = Δ/S. Finally, the 99th percentile of the 100 Rsample values, (Rsig) is computed. If R>Rsig for a
particular k, the clusters are declared significant and different from those occurring by chance. This procedure is
repeated for k = 1 : 7. A similar procedure is also applied in Amini and Straus (2019). This process leads us to
identify 4 significant clusters of Za500l2 . For simplicity, we call the clusters LZl2 to indicate that the clusters are
formed from Za500 fields at lag 2. For each cluster, the cluster centroid (LZcl2) is computed by taking the mean of
all cluster members 1… nc:

LZcl2 =
∑
nc

n=1
Za500l2,n

nc
, (1)

where, ∑ denotes summation over all cluster members, n = 1… nc, in a cluster c.

We clarify that we choose the first two PCs of Za500l2 for clustering as we do not try to explain a large fraction of
variance (say, 80%); rather, we focus on the largest scale features of Za500 and assess clusters with respect to those
phenomena. Another objective reason to choose only two PCs with 54% variance explained is concerned with the
variance ratio R defined above. The variance ratio R can also be regarded as a signal‐to‐noise ratio (Straus
et al., 2017). Figure S13 in Supporting Information S2 shows R computed from PC truncations 1 to 4. As the
figure suggests, the signal‐to‐noise ratio (R) computed from the first two PCs is significant for clusters 3 and
more. However, using three or more PCs does not guarantee the significance of R for clusters 3 and beyond,
possibly because of the addition of more noise.

2.2. Construction of LSMP Indices

We construct a daily LSMP index (LSMPi) for each meteorological variable mainly to make probabilistic pre-
dictions of precipitation. First, we choose a large spatial domain (100°E to 60°W and 20°S to 90°N) that captures
the highly significant and consistent regions for the LSMPs. A large domain was used to ensure that we capture
the full spatiotemporal extent of the LSMPs. Then we divide the years under consideration into training (NDJFM
of 1948–1982) and verification years (NDJFM of 1982–2015). Corresponding to the training and verification
periods, we divide all meteorological fields (Y) into training (YT) and verification (YV) sets. Then, we construct

“training” LSMPs for a variable YT , LYc,Tl∗ for each cluster c as in Equation 1, where ∗ denotes lags 0–6. The

LSMPi for a meteorological variable (YT) in the training period T is constructed by projecting LYc,Tl∗ onto the
corresponding daily (YT) time series,

LSMPic,TY =
(WLYc,Tl∗ ) (WYT)

[WLYc,Tl∗ ]
2 , (2)

whereW is the weight assigned to each grid point based on both the normalized sign count (i.e., normalized by the
number of events. Hence a sign count of 0.6 means 80% of the members have the same sign) and areal weighting
accounting for the convergence of meridians. LSMPic,TY is the daily product having dimensions of lon × lat for
each cluster. The final daily LSMPi (LSMPiTY) is chosen by taking the maximum of the 4 LSMPic,TY , each
computed for a cluster.

Similarly, the LSMPi for a meteorological variable (YV) in the verification period V is constructed by projecting

LYc,Tl∗ onto the corresponding daily YV time series,
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LSMPic,VY =
(WLYc,Tl∗ ) (WYV)

[WLYc,Tl∗ ]
2 , (3)

The final daily LSMPi (LSMPiVY ) is constructed by taking the maximum of the four LSMPi
c,V
Y , each computed for

a cluster. We use the same training LSMP LYc,Tl∗ to compute LSMPi for training and verification data sets. The
daily LSMPi measures how similar a given day is to a specific cluster mean LSMP.

The LSMP process explained above is summarized in the infographic shown in Figure 1.

2.3. Probabilistic Prediction of Precipitation Events Using LSMP Indices

To find useful predictors, we use quantile regression to predict the 95th percentile of P using LSMPi as predictors.
The LSMPi for each variable is constructed as described in Section 2.2. The fitness of each LSMPi predictor is
estimated using a model selection criterion called the Akaike information criterion (AIC; Akaike, 1974). We also
use a combination of two or more predictor variables to estimate if it produces a lower AIC than the individual
AIC values. A suite of measures for assessing the prediction skill of LSMPi is used and associated with different
meteorological variables. These measures of prediction skill are described in Table 1.

Of the atmospheric variables tested, we find that IVT at lag 2 is the best predictor of a PEx event, and adding any
other variable to IVT does not significantly reduce the AIC. Therefore, we use LSMPi for IVT from the training
and verification sets to make probabilistic predictions of precipitation. We use a copula framework to make a
probabilistic prediction of PEx events. Copulas are mathematical functions that define the joint distributions of
two or more random variables independent of their marginal distributions (AghaKouchak et al., 2010; Hao &
AghaKouchak, 2013; Shojaeezadeh et al., 2018). We use a copula to define the conditional probability density of
precipitation using the marginal distributions of an LSMPi and the joint distribution of the LSMPi and daily
precipitation, as summarized below:

If F(p) = y and F(l) = x are marginal conditional distribution functions (CDFs) of daily precipitation (P) and an
LSMPi (l), then there exists a copula function (C) that defines their joint CDF,

F(p, l) = C(F(p),F(l)) = C(y,x). (4)

Figure 1. The infographic shows the steps involved in the large‐scale statistically meaningful pattern (LSMP) analysis.
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The copula probability density function c(*) can be defined as:

c(y,x) =
∂2C(y,x)
∂y∂x

. (5)

From Equations 4 and 5, the conditional probability of precipitation (P)
conditioned on the LSMPi (l) is defined as

f (p|l) = c(y,x)f (l), (6)

where f (l) is the PDF of the LSMPi(l).

3. Results
3.1. Identifying Minimum Number of Clusters Using k‐Means
Clustering

We apply a k‐means clustering algorithm to the 2 leading PCs of Za500l2 and
compute the variance ratio as described in the methods section. The resulting
variance ratio R for 1–7 clusters is shown as a black curve in Figure 2a. We
also compute the variance ratio for the synthetic data as described in the
methods section; the 99th percentile of which (Rsig) is shown as the red dashed

curve. A cluster number is considered significant at the 99% level if R>Rsig (i.e., where a black circle is above the
red line in Figure 2a). The figure suggests that a set of 3 clusters or more is statistically significant at the 99%
significance level. To find the minimum number of robust clusters, we also perform a series of sensitivity tests to
varying event detection criteria (e.g., varying precipitation threshold) and multiple spatial domain sizes. We find
that a minimum of 4 clusters is statistically significant and robust.

In addition to significance and sensitivity tests, we also visually examine the cluster mean Za500 patterns for k= 3,
4, and 5: shown in Figure 2b. Each cluster pattern for k = 3 is easily distinguished from other clusters and
identified using an oval drawn with specific color and line. When going from k = 3 to 4 clusters, we find patterns
quite similar to the previous three clusters again. It is worth noting that those three clusters are defined better than
those for k= 3: magnitudes of the extrema are greater as are the sign counts. In addition, the new cluster is distinct
from the other three patterns and has larger subtropical sign counts than any of the k= 3 cluster means. Therefore,
k = 4 is a clear improvement over what we find for k = 3. Is there further improvement in choosing k = 5? When
we go from k = 4 to 5, we find analogs to the four patterns of k = 4. Three of those four have similar magnitudes
and sign counts as when k = 4. Only one of those four (blue oval of long dashes) has arguably larger sign counts.
However, the new fifth pattern is problematic. First, its elements are very similar to two of the patterns found
when k = 4. Second, it has weak sign counts. In short, it has weak separation from other clusters. Therefore,
although significance testing indicates significantly different clusters are found for k = 3, 4, and 5, we narrow the
choice to k = 4 by grounding the statistical analysis with LSMP maps.

The k‐means clustering was applied to 311 events and the result is in Figure 2b. The k‐means clustering is a hard
clustering method, in that each member is entirely assigned to a cluster. However, events may resemble more than
one cluster. In such cases, the membership of that event is not unequivocally defined. In an iterative procedure, we
identified those mixed cases and removed them from the final clustering. This procedure further reduces the
events from 311 to 243. The final cluster mean patterns in Za500 using 243 events are shown in Figure 3. The k‐
means clustering divides the 243 precipitation events into 4 clusters of roughly equal sizes. Clusters 1–4 have 71,
70, 61, and 41 members, respectively. The PEx dates, along with cluster assignments, are listed in Supporting
Information S1. Moore et al. (2021) applied fuzzy clustering to identify clusters of meteorological variables
associated with Northern California PEx events. Fuzzy clustering assigns probability values to each member of
the cluster. This allows any individual member to belong to more than one cluster. Our procedure ensures that
only those members that have similar probabilities of being in more than one cluster are removed from the final set
of clusters.

Table 1
Contingency Table and Measures of Prediction Skills

(a) Contingency table

Observed

Forecast Yes No Marginal total

Yes (a) Hit (b) False alarm a + b

No (c) Miss (d) Correct negative c + d

Marginal total a + c b + d a + b + c + d

(b) Prediction measures
a∗ = (a + b)(a + c)

(a + b + c+ d)

Measures Formula Range [poor—good]

Probability of Detection (POD) a
(a + c) [0,1]

False Alarm Ratio (FAR) b
(a + b) [1,0]

Threat Score (TS) a
(a + b + c) [0,1]

Gilbert Skill Score (GSS) (a − a∗)
(a − a∗ + b + c) [− 13,1]; no skill = 0

Pierce Skill Score (PSS) (ad − bc)
(a + c)(b + d) [‐1,1]; no skill = 0

Note. The observed and forecasted events are PEx >95th percentile.
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The LSMP patterns shown here are similar to patterns shown in Moore et al. (2021). Using two EOFs of 500 hPa
geopotential anomaly fields, they find four patterns, as well. However, their patterns are derived from time av-
erages of the first 5 days of longer duration PEx events. Here, we show patterns 2 days prior to PEx event onset
and include many more shorter‐duration events. Noting these differences, our clusters 1–4 are most similar to
their clusters C2, C1, C3, and C4, respectively. Our names for the patterns differ from those used by Moore
et al. (2021) because: (a) We examine the patterns over a larger domain and (b) we emphasize the properties of the
field used to define the clusters.

Our four clusters are described below with corresponding Moore et al. (2021) names in parentheses.

Figure 2. (a) Significance of Za500l2 clusters for cluster numbers 1–7. The X‐axis shows the number of clusters for which the
variance ratio (R) on the Y‐axis is computed. The black curve shows variance ratio R computed from Za500l2 . The red curve
shows the 99th percentile (Rsig) of the variance ratio computed from synthetic data generated using the Monte Carlo procedure.
A cluster number is considered significant if R>Rsig. (b) Clustering of 500 hPa geopotential height anomalies, Za500l2 at lag 2.
Top row: k = 3, Middle row: k= 4, Bottom row: k = 5. Shaded contours are plotted where significant at the 95% level (unit: m).
The small square over Northern California on each panel is the NorCal region where the PEx occurs 2 days later. The ratio in the
lower right corner of each panel shows the number of events in that cluster divided by the total number of events. Line contours
show consistency via sign counts, where green equals 0.6 (meaning 80% of the ensemble members have the same sign at that
point). Purple is 0.75 (87.5%) and yellow is 0.9 (95%). The colored ovals indicate the most similar pattern across different rows.
However, three of the panels on the bottom row seem subjectively to mix two patterns on the middle row. In the top‐left panel,
the navy‐colored rectangle shows the domain used for the clustering analysis.
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1. Northwest continental negative height anomaly (Poleward‐shifted zonal jet) Cluster 1 has a large negative
Za500l2 that extends over Alaska and the west coast of North America. Southwest of it, a positive anomaly
occupies the midlatitude Pacific. Also present is a faint, low sign count, but significant positive anomaly over
northeast North America.

2. Eastward positive “PNA” (equatorward‐shifted zonal jet) Cluster 2 has a large negative geopotential anomaly
centered over the northern Pacific co‐occurring with a positive Za500l2 to the south over the central tropical
Pacific. To the east, a significant, weak, low sign count wavetrain occurs: positive central Canadian and
negative SE USA anomalies. Together the four anomalies look somewhat similar to the Pacific‐North
American (PNA; Barnston & Livezey, 1987; Leathers et al., 1991; Wallace & Gutzler, 1981) loading
pattern, except that it has been phase shifted eastward. “PNA” in the cluster label is purely descriptive of the
pattern and not intended to be equal to the actual PNA pattern.

3. Westward negative “PNA” (midlatitude blocking) cluster 3 has a low in the central subtropical Pacific and a
Northwest‐Southeast wavetrain with a very strong positive anomaly centered over the Aleutians, a strong
negative anomaly near the Canadian west coast, and a weak, low sign count, positive anomaly over south-
eastern North America. These four anomaly centers may look like the PNA pattern (with negative sign), but
this cluster pattern is shifted westward of the PNA loading pattern. Again, “PNA” in the label is purely
descriptive. This pattern nearly matches the California cold air outbreak (CAO) pattern (Grotjahn &
Zhang, 2017) 2 days before the CAO.

4. Prominent Alaskan ridge (high‐latitude blocking) cluster 4 has a prominent positive anomaly over Alaska and
the adjacent Arctic Ocean. To the south‐southeast, lies a negative anomaly and further south‐southeast a weak
positive anomaly extending across much of the tropical Pacific to subtropical Baja California.

Three broad conclusions can be drawn to this point. First, several prior works listed in the introduction looked at a
smaller region, and all find a low pressure centered off the California coast. We also find an anomalous low
pressure just off the coast in all of our PEx events. But, this low pressure differs greatly in shape between the

Figure 3. Large‐scale statistically meaningful pattern clusters of Za500l2 (unit: m) 2 days prior to the PEx onset in a format
similar to individual panels of Figure 2b. Events identified as “mixed” have now been removed from the analysis leaving 243
events tracked. The ratio in the lower right corner of each panel shows the number of events in that cluster divided by the total
number of events tracked. Line contours show consistency via sign counts, where green means 80% of the ensemble
members have the same sign at that point, purple is 87.5%, and yellow is 95%. The navy‐colored large rectangle shows the
domain used for the clustering analysis. The small black rectangle indicates the NorCal region. A dashed line marks the
equator.
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clusters. Second, this low pressure is part of a much larger‐scale pattern that can be grouped into four clusters. The
spatial patterns associated with the PEx clusters extend over much of North America and the northern Pacific,
even across the equatorial Pacific. Significant patterns over the tropical Pacific suggesting a tropical connection to
rainfall extremes over Northern California. Third, each cluster mean in Figure 3 has patterns that are statistically
significant (shading) and highly consistent (contours), the two essential features of an LSMP.

3.2. Evolution of Clusters

As expected from the title, this paper focuses on the concurrent evolution of cluster mean LSMPs during the
2 weeks before PEx onset. Some clusters can be traced backward in time much longer than other clusters. The
figure descriptions are included to identify important features from which generalizations will be drawn. There
are multiple potential uses for these LSMP details, such as: dynamical analysis, model assessment, model pro-
jections, and predictability. Probabilistic prediction is explored in Section 3.3.

To sample LSMP properties the following figures are discussed. Figure 4 shows 500 hPa streamfunction
anomalies (Ψa500); this field captures the patterns of atmospheric highs and lows and consequent flow, but is
preferable to geopotential height for depicting flow patterns in the tropical and equatorial regions. The upper‐level
jet evolution is shown, with a focus on the zonal component at 300 hPa (Ua300, Figure 5) supplemented by in-
formation from the meridional wind anomaly component (Va300) in Figure S14 in Supporting Information S2.
We show the evolution of vertically integrated water vapor transport anomalies (IVTa) in Figure 6. Local minima
in mean sea‐level pressure anomaly (SLPa, Figure 7) are used to indicate the position of cyclones (Wernli &
Schwierz, 2006), which guide low‐level water vapor fluxes toward NorCal. Temperature anomalies at four levels
are discussed in Supporting Information S2.

3.2.1. Evolution of 500 hPa Streamfunction Anomalies (Ψa500)

The evolution of 500 hPa streamfunction anomalies (Ψa500) for the four clusters is shown in Figure 4. Ψa200 and
Ψa850 are similar to that for Ψa500, and hence are not shown.

The cluster 1 pattern starts with a central North Pacific ridge anomaly roughly 5–6 days before the event onset.
This ridge anomaly extends throughout the atmospheric column (being visible at 300 and 850 hPa levels).
Northeast of it, a trough builds over Alaska and beyond: from NorCal northwestward to the Bering Strait. This
low anomaly is very large and mainly over the continent, hence our label of NW continental negative height
anomaly. That large trough anomaly is strongest the last 2 days before onset. At onset, a weak ridge anomaly
forms over southwestern North America. This combination of anomalies, trough northwest and ridge southeast of
the PEx region, supports a strong onshore flow over the PEx region.

Cluster 2 has a pair of anomalies: a mid‐latitude trough centered near 50°N and a subtropical ridge near 20°N that
emerge in the North Pacific almost two weeks before PEx onset. Both anomalies grow in size and strength over a
2‐week time, with the slight eastward movement of the ridge‐trough pattern. The orientation and location of the
ridge‐trough pattern in cluster 2 both differ from cluster 1, such that the trough anomaly in cluster 2 is located
further south, over the North Pacific Ocean and partly over southwestern Canada. This trough anomaly is
strongest 2 days before onset. In addition, the trough‐ridge pattern in cluster 2 is oriented more N‐S than in
cluster 1.

In cluster 3, a stationary Aleutian ridge anomaly is observed in the 500, as well as in the 300 and 850 (not shown),
hPa Ψa fields more than a week before onset, steadily strengthening until peak anomaly amplitude two days
before onset. Two Ψa500 troughs develop, one to the south and the other to the east of the Aleutian ridge anomaly
around a week before the onset. A secondary ridge in Ψa500 forms over northern Mexico and Southern CONUS a
few days before the onset. This secondary anomalous ridge is much stronger and wider than in the two prior
clusters. The four strong anomaly centers are superficially similar to the PNA pattern, but the whole pattern is
shifted west by >20 degrees of longitude, thus prompting our label of Westward negative “PNA.”

For cluster 4, a positive anomaly in Ψa500 starts developing over northern Alaska about 8 days before PEx onset.
This ridge prompts our cluster label: Prominent Alaskan ridge. This ridge anomaly expands westward until the
onset, but it reaches peak amplitude over northern Alaska 2 days before onset. A low forms over the central North
Pacific a few days later, which expands eastward across the North American west coast, forming a band of low
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pressure anomaly extending from the tropical Pacific Ocean across to north‐central Canada. A secondary ridge
anomaly is again centered over northern Mexico 2 days prior to the onset and extends southwestward into the
tropical Pacific. Together, the anomalies form a ridge‐trough‐ridge pattern along the North American west coast.

In all four clusters, the most prominent and distinguishing features of each LSMP reach peak amplitude, sig-
nificance, and consistency 2 days before onset. Furthermore, the cluster means differ less at onset than 2 days
before; therefore, the best time for defining an LSMPi that separates the clusters is 2 days before onset.

3.2.2. Evolution of Upper‐Level Jet (Ua300)

The evolution of 300 hPa zonal wind anomaly field (Ua300) is shown in Figure 5. The meridional component
wind anomaly at 300 hPa (Va300) is shown in Figure S14 in Supporting Information S2. Though not shown, the
same fields at 200 hPa are virtually identical, giving us confidence in using Figure 5 to discuss jet stream
properties.

Figure 4. Evolution of 500 hPa streamfunction anomalies (unit:106m2/ s). Shaded areas show anomalies significant at the 5%
level. Contours show the consistency of the anomaly pattern. Green, magenta, and yellow contours show that at least 80%,
87.5%, and 95% of the cluster members have the same sign of anomalies, respectively. Solid black contours (contour interval:
10 × 106m2/ s) in the top row show the climatological total streamfunction. The ratio in the lower‐left corner of each top row
panel shows the number of events in that cluster divided by the total number of events. The black rectangle indicates the NorCal
region. A dashed line marks the equator.
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For cluster 1, beginning about 5–7 days prior to onset, there is a prominent dipole across much of the North
Pacific. This dipole is centered mainly on the downstream end of the Asian subtropical jet. The effect of the dipole
is to build the north side and reduce the south side of the jet mid‐Pacific. As onset approaches, another negative
anomaly (over northwest North America) appears. That negative anomaly along with the increasing amplitude
and eastward extension of the positive anomaly results in a narrowing and dramatic strengthening of the jet over
our NorCal focus region. Onshore zonal winds exceed 25 m/s at the focus region with an orientation that is from
the southwest. The Va300 pattern (Figure S14 in Supporting Information S2) shows comparable southerlies at and
north of the NorCal region, giving the jet a SW‐NE orientation there. The LSMPs are approximately equivalent‐
barotropic. Hence, the anomaly pattern for a wind anomaly component is similar at all levels from 850 through
300 hPa.

In cluster 2, the 300 hPa streamfunction anomalies (similar to the 500 hPa Ψa in Figure 4) show that the NorCal
region is sandwiched between a deep low to the north and a narrow ridge to the south at the onset. Hence, zonally‐
elongated 300 hPa zonal wind anomalies are oriented southwest‐northeast up to two days before onset. A tripolar
pattern by day 2 is similar to that in cluster 1, except the meridional spread is larger. A result is the positive
anomaly of cluster 2 is nearly at the same latitude as a negative anomaly in cluster 1. Moreover, unlike cluster 1,
these anomalies are apparent 10–11 days prior to onset. These anomalies: move the mid‐Pacific jet axis

Figure 5. Same as Figure 4 but for the evolution of 300 hPa zonal wind anomalies (unit: m/s). Solid black contours (contour
interval: 10 m/s) in the top rows show the climatological total zonal wind.
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southward, then extend the jet eastward (at about 35°N), narrow the latitude spread, and strengthen the jet stream
over the eastern North Pacific. At onset, the positive zonal wind anomaly is strongly onshore, and the jet has a
southwest orientation at the NorCal region, locally similar to but stronger than cluster 1.

In cluster 3, a tripolar zonal wind anomaly appears more than a week before onset. This tripolar pattern looks
superficially similar to that in cluster 2 except with the opposite sign. A key difference is: the centers are roughly
25° longitude further west. Starting about 6 days before onset, a dipole appears over western North America,
including a positive westerly anomaly over NorCal. The main negative anomaly is centered on the climatological
subtropical jet, causing it to broaden in latitude. As onset approaches, the two southern positive anomalies join,
suggesting a flow from lower latitudes than the prior two clusters. The meridional wind component (Figure S14 in
Supporting Information S2) has strong southerlies centered over Kamchatka and the NorCal region, with
northerlies in between (Gulf of Alaska). So, the jet stream winds at NorCal are again southwesterly.

In cluster 4, longitudinally broad bands of zonal wind anomalies appear 5 days before onset. Westerlies are
enhanced in the subtropics and over the Arctic Ocean. A large negative anomaly covers much of the middle
latitudes, especially 2 days before onset. In the mid‐Pacific, the climatological position of the subtropical jet is
centered midway between the negative anomaly and the southern positive anomaly. The net effect of the
anomalies is to build the subtropical jet on its equatorward side. Downwind the anomaly curls northward creating
strong southwesterly flow at the NorCal region. The meridional component is again strongly positive at the North
American west coast.

Although the pattern of strong westerly flow (from a southwesterly orientation) at the NorCal region is locally
very similar in all four clusters, how that local pattern is created differs greatly elsewhere, especially over the
North Pacific.

3.2.3. Evolution of Integrated Vapor Transport Anomalies (IVTa)

Climatological total IVT (Figure S15 in Supporting Information S2) has two major positive bands: eastward flux
oriented WSW to ENE across the North Pacific (from 30 to 40°N) and a tropical band of westward IVT centered
at 15°N in the western Pacific. There is a relative minimum along the Baja coast. Each cluster mean has a strong
onshore flow from the SW at NorCal. So, IVTa for each cluster must be large over the NorCal region to overcome
the climatological low IVT.

Figure 6 shows IVTa and 850 hPa horizontal wind anomaly vectors. In cluster 1, a pair of zonal bands of positive
IVTa form in the Pacific consistent with a positive streamfunction anomaly centered at 30°N. During the 2 days
before PEx onset, the northern positive anomaly is driven toward the NorCal coast by the intensifying low
pressure along the Canadian coast. This positive anomaly becomes confined close to the North American west
coast and IVTa peaks over the NorCal region with a SW to NE orientation at onset. Negative IVTa covers a very
large region northwest of NorCal, including all of Alaska. This large negative area is consistent with cold air
advection as presumed from the northeasterly flow (850 hPa wind vectors). In turn, the cold advection supports
the large negative 500 hPa streamfunction in Figure 4.

In cluster 2, a roughly zonal band of strongly positive IVTa develops along 35°N more than a week before the
onset date, consistent with the cyclonic circulation visible in Figure 4. This band looks similar to cluster 1 but its
peak values are further east and moving more slowly during the 2 days before onset. The IVTa further intensifies
and bends northeastward along the continental coast. Total IVT is shown in Figure S15 in Supporting Infor-
mation S2. Similar to cluster 1, the moisture travels> 70° longitude across the North Pacific. As with cluster 1, the
local IVTa is again strongest and oriented SW‐NE over NorCal. There is negative IVTa northwest of the NorCal
region but it is less extensive and south of the location in cluster 1. The associated northeasterly flow brings cold
air off Alaska, supporting the negative streamfunction anomaly there.

Cluster 3 IVTa develops broad, significant, and consistent areas a week before onset. Somewhat opposite to
cluster 2, a positive anomaly develops near the Aleutians. To the south and east a large negative anomaly forms,
along 35–40°N arcing poleward into Canada. These two anomalies may be anticipated from flow around the
equivalent‐barotropic anomalies of Ψa500 (and SLPa shown next). Unlike opposite‐signed anomalies in cluster 2,
these two anomalies stay in place, consistent with other variables, such as Figure 4. In addition, consistent with
prior figures, an intense positive IVTa develops close to the California coast (as well as a notable positive area in
the tropics) only within 2 days before onset. Hence, although clusters 2 and 3 look like the “PNA” pattern shifted
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east and west respectively, positive IVTa at NorCal is present >5 days before onset in cluster 2, but only a day
before onset in cluster 3. Moreover, although all clusters have positive IVTa at and adjacent to the CONUS coast,
IVTa is negative to the west and southwest of that area in this cluster. In contrast with cluster 2, where a large
positive IVTa anomaly travels eastward from beyond the dateline, the moisture source now is much closer to and
southwest of NorCal, reflecting how this LSMP develops in place.

The moisture transport anomaly pattern in cluster 4 has similarities intermediate to those in clusters 2 and 3.
Visible from day T‐5 to onset, cluster 4 has a positive anomaly like cluster 2 that moves eastward several days
before onset except it is now 5° further south. Cluster 4 is similar to cluster 3 in having a persistent negative
anomaly where climatological IVT is the largest along the Canadian coast. Also like cluster 3, a large positive
anomaly off Baja California occurs and extends across the equator. However, the enhanced transport crossing the
California coast has its origin just north of Hawaii about 5 days before onset.

Notably, the local pattern of IVTa at onset is very similar in all clusters over the NorCal region: sign count locally
largest and have a SW to NE orientation. These results are consistent with Hecht and Cordeira (2017), who show
that more extreme precipitation occurs along the California north coast and interior for south/southwesterly ARs

Figure 6. Same as Figure 4 but for the evolution of integrated vapor transport (IVT) anomalies (shading; unit: kg/m‐s). Solid
black contours (contour interval: 100 kg/m‐s in the top rows show the climatological total IVT. The vectors show the 850 hPa
wind anomalies (unit: m/s). The upper color bar at the bottom pertains to the 850 hPa wind anomalies and the lower color bar
to the IVT anomalies.
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than for westerly ARs. As with other variables, the LSMP properties elsewhere differ markedly, especially 2 days
before onset. Where cluster 2 and cluster 1 (a bit further north for the latter) have positive anomaly mid‐Pacific,
cluster 3 (and to some extent cluster 4) has negative anomaly there. Clusters 3 and 4 appear to have an obvious
connection to subtropical latitudes, whereas moisture transport in cluster 1 is more zonal at a much higher latitude.
These differences between the patterns are less visible at the onset.

3.2.4. Evolution of Sea Level Pressure Anomalies (SLPa)

Figure 7 shows SLPa evolution. The LSMPs are similar to Figure 4 due to the approximately equivalent‐
barotropic nature of the LSMPs. However, there are notable differences. To reduce the repetition of earlier
comments, this subsection emphasizes the differences. A noticeable difference is the offset of negative SLPa
anomalies from corresponding Za500 anomalies at onset near the NorCal region (most other anomalies have a
negligible offset). Such an offset is consistent with observed extratropical cyclogenesis wherein vertical tilt
develops as upper and lower troughs, previously without vertical tilt, interact (Grotjahn, 1996; Grotjahn &
Tribbia, 1995). Each NorCal PEx is associated with such a storm.

In cluster 1, a positive SLPa develops in the subtropical mid‐Pacific around a week before the onset. This anomaly
slowly expands eastward. A few days before onset, a low pressure anomaly over Alaska and western Canada
forms in essentially the same location as at 500 hPa. The low pressure anomaly moves southeastward to become
20°east of the 500 hPa location at onset. Southwesterly flow around that trough drives surface air onshore over
NorCal.

The cluster 2 SLPa LSMP has a large low anomaly south of Alaska, much like the streamfunction anomaly in the
mid and upper atmosphere. But unlike the upper air patterns (e.g., Figure 4) the prominent high anomaly in the
subtropics is missing. The negative SLPa low forms on the southeastern quadrant of the climatological atmo-
spheric trough in the North Pacific. This low develops 11 days before onset. It subsequently strengthens and
moves eastward until the anomaly is centered over the Canadian and NWUSAwest coast at onset, about 5° east of
the 500 hPa position. Although cluster 1 has a similar low at onset, the time of formation is >10 days earlier and
movement of the anomaly is eastward (instead of southeastward) for cluster 2. As with cluster 1, the anomaly
fosters onshore surface flow over the NorCal region.

The cluster 3 LSMP is dominated by high SLPa centered just south of the Aleutians >10 days before onset. This
anomaly is stationary and strengthens until day T‐2 then wanes; it occurs through the depth of the troposphere. By
day T‐5, a stationary, weak low appears west of Hawaii, near the dateline, much weaker than its upper air
counterpart. Only 2 days before onset the trough NW of NorCal appears, ∼5°SE of the upper troposphere trough.
As in clusters 1 and 2, this anomaly would drive onshore surface winds, but this trough has a much smaller
footprint. High SLP from the Great Lakes to Hudson Bay appears at onset; it is∼10° east and much weaker than its
upper air analog.

Cluster 4 has two dominant features. (a) A strong, large SLPa high over Alaska and NW Canada develops from
day T‐8 to day T‐2, then diminishes by onset. (b) A trough in the subtropical eastern Pacific strengthens as it
moves northeastward from day T‐5 to onset; it moves onshore ∼10° SE of the upper level trough at onset. This
SLPa trough has a different orientation than other clusters in that it has a trailing portion extending SW into the
subtropics. Therefore, as with other variables, the pattern near the NorCal region at onset is similar in all four
clusters, but elsewhere the patterns are quite different and especially strong at day T‐2.

3.3. Probabilistic Predictions of Precipitation Extremes Using LSMPi as Predictors

This subsection shows some tests using individual LSMPi values, both at and prior to onset, to predict heavy
precipitation values. As described in Section 2.2, we construct LSMPs from two periods of data: training LSMPs
LYc,Tl∗ and verification LSMPs LYc,Vl∗ and do so for 0–6 days prior to onset. The training period is 1948–1982,
whereas the verification period is 1982–2015; both periods use NDJFM months. We find that the LSMP clusters
in the training and verification data are similar in spatial pattern, significance and consistency, an example of
which is shown in Figure S20 in Supporting Information S2. The strong resemblance between the training and
verification LSMPs supports the robustness of the patterns irrespective of the different training and verification
periods. Less important to the discussion here is that we find more variation in the frequency of each cluster type.
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The numbers in clusters 1 and 2 are similar in both periods, but there are fewer members in clusters 3 and 4 in the
verification period. We do not explore climate change issues in this report.

As described in Section 2.3, we constructed training and verification LSMPis from daily anomalies of the at-
mospheric variables that show large‐scale synoptic patterns prior to the PEx onset. The tested variables are
anomalies of 500 hPa geopotential height (Za500), 500 and 850 hPa air temperatures (Ta500 and Ta850), 850 hPa
zonal and meridional winds (Ua850 and Va850), sea‐level pressure (SLPa), skin temperature (Ts), precipitable
water (PWa) and IVTa. Our discussion of relative skill emphasizes metrics designed for binary predictions.
Although statistically valid, such measures are not ideal for this problem because near misses are not distin-
guished from large misses. As noted in Grotjahn (2011) there is more forecast value in near misses than large
misses.

Table S1 in Supporting Information S1 shows measures of prediction skills when using LSMPis as predictors of
extreme precipitation at lag 0 (and lag 2, in parenthesis). It is apparent that for all these variables, hits exceed
misses by a large margin, indicating that the LSMPis can capture occurrences of PEx events very well. Of course,
the skill decreases as the lag increases. But the LSMPis do so well that even at 2 days lag, they forecast the event
occurrence with high accuracy. For all the variables, the probability of detection (POD) at lag 0 is 0.74 or more

Figure 7. Same as Figure 4 but for the evolution of sea‐level pressure anomaly (unit: hPa). Solid black contours (contour
interval: 10 hPa) in the top rows show the climatological total sea‐level pressure.
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(0.52 at lag 2). The maximum POD is offered by IVT at lags 0 (0.89 for
training and 0.78 for verification data). It is worth noting that the false alarm
ratio (FAR) (FAR = FA/ (hits + FA)) is comparable to the POD for each
variable. However, assessing the forecast skill by comparing POD with FAR
may be misleading because the predictands (extreme precipitation events) are
rare by definition (occurring less than 5% of the time). As explained in Ebert
and Milne (2022), the evaluation of forecast skill based upon proportion‐
correct measures is not appropriate for predicting rare events. The TS score
and Gilbert skill score are much lower than the PSS values for each variable.
Ebert and Milne (2022) highlight the discrepancy among different skill scores
when making forecasts for rare events. They suggest that the Pierce skill score
is the only skill score that meets all three adequacy constraints for a proper
measure of skill in rare events. It is worth noting that the forecast skills for
training and verification data are comparable, and there is no drastic fall in
forecast skills when LSMPi is constructed by projecting the training LSMPs
(constructed for the period NDJFM of 1948–1982) onto the daily meteoro-
logical fields over an independent (verification) period (NDJFM of 1982–
2015). Integrated vapor transport is superior in each of the metrics, which is
perhaps unsurprising given that all the LSMPs show an AR‐like pattern over
the PEx region. Similarly, other studies of the circulation close to the PEx
region have strong IVT around the south side of a trough that is unusually far
south (e.g., D. Chen et al., 2021; Grotjahn & Faure, 2008).

Table S1 in Supporting Information S2 includes the AIC, which is a measure of the fitness of a variable as a
predictor of PEx events. When comparing two variables, a variable with a lower AIC is considered a better
predictor. Table 2 indicates that the most skillful predictive combination of variables varies with lag. In the
subsequent discussion, the subscript “a” has been dropped. For example, for lag 0, IVT is the best single predictor,
then the best combination for two predictors is IVT with U850. For three and four predictors, add PW then SLP in
the training data set. However, for lag 2, prediction is best when IVT is followed by PW (and thenU850) when two
(and then three) predictors are used, respectively, in the training data set. Hence, IVT + U850 + PW is the best
combination of three variables at lag 0. How many predictor variables together can best predict the PEx events
based on our binary metrics? Figure 8 shows prediction skill metrics in the training and verification time periods
for different numbers of predictor variables at lags 0–6. The same combinations of predictor variables (as in
Table 2) are used for predicting PEx events in the training and verification time periods. The fitness criteria of
predictors, AIC, shows that for shorter lead times (0–2 days), AIC is minimum for a combination of 3–4 predictor
variables, suggesting that the combination of 3–4 of our predictor variables fits the prediction model best, and
adding any more variable either adds no further improvement or possibly degrades the prediction. For longer lead
time (4–6 days), AIC varies little with the number of predictors, though some other metrics do best with at least 3
or 4 predictors. The forecast skill based upon PSS suggests that the forecast skill is best for a combination of 3–4
variables for lags 1–6. But there is little improvement in prediction skills when using more than one predictor for
lag 0 in the verification data. A comparison of the left and right columns in Figure 8 suggests that the fitness of
predictor variables degrades a bit when the combination of predictor variables based upon training data is used to
predict PEx events in the verification set. Similarly, the prediction skills are slightly degraded for verification
data. However, there is no drastic fall in prediction skill (PSS) when compared with the training data. Moisture‐
based variables such as IVT or PW are the best predictors at any lag. Moreover, lower‐level atmospheric variables
(e.g., U850) are better predictors than mid‐level atmospheric variables (e.g., T500). Most notably, IVT is the best
predictor until 2 days before the onset but is the third best predictor nearly a week before the onset (lag 6). This
analysis suggests that LSMPs do offer predictability of PEx events, but one must select the suitable variable
depending on how far in advance one wants to make a prediction.

Figure 9a shows the probabilistic prediction of precipitation using lag 0 IVT LSMPi as a predictor of PEx in the
training data set. The IVT LSMPi and PEx have a significant (at the 5% level) correlation of 0.43 based on
Spearman's rank correlation test. Out of the 23 copulas tested, we find that the Joe copula performs the best based
on maximum likelihood estimates. Therefore, we use the Joe copula to make predictions of the precipitation
values. In the figure, the vertical color bars show the likelihood of predicted values, so the yellows indicate low

Table 2
Cumulative Ordering of Variables (LSMPis) According to Their Fitness as
Predictors of the PEx Events at Different Lags in the Training Data Set

Cumulative
ordering
based on AIC lag 6 lag 4 lag 2 lag 1 lag 0

1 PW PW IVT IVT IVT

2 SLP U850 PW SLP U850

3 IVT V850 U850 PW PW

4 U850 IVT V850 U850 SLP

5 T850 SLP SLP V850 V850

6 V850 T850 T500 Z500 Z500

7 T500 Z500 Z500 Ts T500

8 Z500 T500 Ts T500 T850

9 Ts Ts T850 T850 Ts

Note. The predictors are added cumulatively. The ordering shows the best
predictor (or predictor combination), based on AIC, each time a set of pre-
dictors is tested. Refer to the text for more details. The variables shown are
anomalies but the subscript “a” has been removed for brevity here.
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likelihood, and blues indicate a high likelihood of the predicted precipitation
values. The figure shows that LSMPi constructed from IVT can predict the
observed precipitation values (red dots) with high likelihood as most of the
observed precipitation values are within the highly likely region (likelihood ≥
0.75). The uncertainties in these predictions are shown by the black dots,
which show the 95% confidence interval of the predicted values. Almost all of
the observed extreme precipitation values lie within the 95% confidence in-
terval. Figure 9b shows the predictions of PEx events based on the verifica-
tion data. As might be expected from the previous figure, the predictions in
the verification data are not quite as good as in the training data, but they
remain comparable to those in the training data. This analysis shows that the
LSMPis are skillful predictors of extreme precipitation values when evaluated
on independent data.

4. Summary and Conclusions
Previous studies show that there is more than one set of large‐scale circulation
patterns that create extreme precipitation (PEx) events over Northern Cali-
fornia (NorCal). In some of the published works, the large‐scale circulation
patterns connected to PEx events (or any other extreme meteorological
events) are loosely described as large‐scale meteorological patterns (LSMPs).
However, as defined by Grotjahn (2011), an LSMP is more than a simple
composite or aggregate, and it must indicate what is important in that com-
posite or aggregate. What is important must pass both a significance test and a
consistency test (like sign counts). To emphasize these statistical tests, we
rename “LSMP” to be large‐scale statistically meaningful patterns, here
associated with PEx over NorCal. These have been our broad objectives:
First, we establish what the minimum number of LSMP clusters are for
NorCal PEx events. Second, we identify what is consistent and significant in
the LSMP clusters of meteorological variables leading to PEx events. Third,
we present a framework for the probabilistic predictions of PEx events using
LSMP‐based indices (LSMPis) as predictors. Those aspects of the current
study have never been examined before.

We identified 311 exclusive PEx events, defined as the 24‐hr precipitation
averaged over the NorCal region (P) greater than the 95th percentile of P over
the 1948–2015 period from the CPC data. We apply k‐means clustering
analysis to the first two principal components of 500 hPa geopotential height
anomalies (Za500l2 ) two days before the 311 PEx onset dates. The patterns are
most strongly distinguishable 2 days before onset and that is why we chose
that timeframe for the clustering. Our analysis, using both the statistical and
heuristic methods, suggests that a minimum of four clusters can explain
NorCal PEx events. To analyze clusters whose members are distinct from
members in other clusters, we removed PEx events identified as “mixed
cases.” This procedure reduces the number of PEx events to 243. The four
clusters are identified as (a) northwestern continental negative height
anomaly that has a large negative geopotential height anomaly extending over
Alaska, western Canada, and the NW CONUS, (b) eastward positive “PNA”
that has a large negative Za500 centered over the northern Pacific co‐existing
with a positive Za500 to the south of it over the central tropical Pacific (be-

tween 20°N and 20°S) and a wavetrain to the east, (c) westward negative “PNA” pattern having a very strong
positive Za500 centered over the Aleutian region with low heights to the south over the subtropical Pacific and a
wavetrain to the east that creates a strong Za500 near the Canadian west coast. (d) Prominent Alaskan ridge that

Figure 8. Prediction skill measures for combinations of LSMPi predictors.
The x‐axis shows the cumulative number of predictors, whereas the
individual lines are for lags 0, 1, 2, 4, and 6. The LSMPi predictors (LSMPis)
are combined using the order as shown in Table 2. Training period: NDJFM
of 1948–1982; verification period: NDJFM of 1982–2015.
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has a prominent positive Za500 over Alaska and the adjacent Arctic Ocean with a trough across the midlatitude
Pacific arcing into the NW CONUS.

The investigation of synoptic properties leading to PEx onset suggests that the LSMPs evolve differently from
each other. The LSMP patterns near NorCal are essentially the same at PEx onset, but they have distinctly
different patterns further away from the NorCal region and leading up to onset. For example, as the names of the
clusters suggest, the streamfunction (and geopotential) anomalies have distinct spatial signatures in all four
clusters. In addition, in two clusters a prominent part of the LSMP is present at least a week before onset, whereas
other clusters develop their LSMPs only a couple of days before onset. Some clusters have nearly stationary
anomalies that form the low pressure NW of NorCal, whereas other clusters have multiple features that travel
large horizontal distances. The source of the moisture varies: from west of the dateline in the midlatitude Pacific,

Figure 9. Probabilistic prediction of the precipitation amount (mm/day) using a single IVT LSMP index (IVT LSMPi) as a
test. This test uses lag 0 data. Red dots show the observed precipitation values. Each vertical line represents the conditional
marginal distribution of precipitation, color‐coded based on the density values. The black dots mark the 95% range of
predicted precipitation for that LSMPi value. (a): Training and (b): Verification data. The Y‐axis uses a log‐scale. The methods
section provides details.
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to ocean>30° west of NorCal, to the tropical Pacific near Hawaii, and in between. Though IVT anomalies (IVTa)
at the onset have the same southwestern to northeastern orientation near NorCal for all clusters, cluster 2 and
cluster 1 have positive IVTa mid‐Pacific, whereas clusters 3 and 4 have negative IVTa there. Cluster 4 has a
distinct stationary, warm lower tropospheric temperature anomaly over Alaska and much of the Arctic Ocean, in
contrast, cluster 1 has a cold anomaly over the northeastern Pacific and Alaska that develops by onset. We find
evidence that the NorCal PEx events have tropical connections, such as significant and consistent Za500 south of
20°N crossing the Equator. Significant but not sufficiently consistent skin temperature anomalies hint at possible
El Niño and La Niña influences on PEx events in clusters 2 and 3, respectively.

We estimated the predictive skills of LSMPis constructed from the training and verification periods. We con-
structed the LSMPi for a variable in the training and verification data by projecting the training LSMP onto the
related daily variable in the training and verification data, respectively. Simple binary forecast metrics (e.g., POD,
FAR, and PSS) show that the LSMPis have skills. Both capturing onset PEx as well as predicting PEx several days
in advance. The best predictor tested was moisture‐based with IVT being superior a day or two before onset.
Moreover, lower‐level variables we tested have superior prediction skill compared to middle or upper levels, at
least up to 6 days before the onset. We tested the concept of using LSMPis to make probabilistic predictions of the
amount of precipitation and found even one predictor has skill.

This work complements the existing literature on the NorCal PEx events, especially the work by Moore
et al. (2021). Previous studies (e.g., Fish et al., 2022; Guirguis et al., 2019; Moore et al., 2021) show multiple
“significant” synoptic patterns connected to the PEx events, for which we find comparable patterns. In this report,
LSMPs are shown for the first time, specifically identifying where the members that comprised the LSMPs are
highly consistent. Consistency is indicated by how often an anomaly of the same sign occurs at a grid point or
location. Oftentimes, the more highly consistent locations are also where the anomaly magnitude in the LSMP is
also larger (and significant). However, there are exceptions where the anomaly is highly consistent but not strong
(e.g., subtropical central Pacific 500 hPa streamfunction in Cluster 1 at onset) or vice‐versa (e.g., central Pacific
IVT in Clusters 1, 2, and 3 at onset). We also introduce a rigorous statistical test to establish the minimum number
of clusters needed for the clusters to be significantly different. The identification of the minimum number of
clusters can help to facilitate future storyline‐based simulations of extreme events resulting from multiple large‐
scale patterns. Moreover, this LSMP‐based work provides a useful framework for the process‐based evaluation of
climate model simulations that can benefit both climate scientists (e.g., climate model development) and prac-
titioners (e.g., climate model credibility for use in water resource management decisions). Additionally, since
LSMPs are synoptic‐scale patterns, they can be detected in coarse‐resolution climate models. The LSMP patterns
identified in this work can be used to evaluate climate models for applications such as model selection and multi‐
model weighting for future projections. Similarly, the indices that we test, one for each LSMP, can be further
refined to better capture how well the two‐dimensional spatial pattern on a specific day matches the shape and
intensity of the corresponding LSMP. Since each index thereby collapses a two‐dimensional pattern into a single
number, one‐dimensional time series tools can be applied to assess climate models. These LSMP‐based as-
sessments can be used to rank and weight models (on the specific skill in simulating NorCal PEx) and improve
future projections of such extreme events.

Our work prompts further research. For example, as discussed in Reed et al. (2022) and shown by Palipane and
Grotjahn (2018), LSMPs provide a useful metric for evaluating model skill. Our work suggests tropical tele-
connections to the NorCal PEx events that could be further explored. We demonstrated that probabilistic pre-
diction is feasible with LSMPis and the use of multiple LSMPis should be explored to improve such prediction,
based on qualitative results in Grotjahn (2011). Potential future work could use the LSMP‐based framework for
model skill evaluations over the NorCal region, investigating changes in LSMPs in response to global warming,
understanding the tropical impact on the NorCal PEx events, and designing storyline‐based simulations to un-
derstand the effect of climate change on the historical large flood events over California (e.g., Michaelis
et al., 2022; Rhoades et al., 2023). LSMPs in other time frames could be examined: Moore et al. (2021) find
similar aggregates (not LSMPs) for 5‐day averages that look similar to the LSMPs we show for 24‐hr average
PEx. LSMP analyses for PEx in other contexts could be explored such as rain versus snow‐producing events.
Finally, most of these questions could be explored for other regions of Earth.
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